Results are presented concerning topological cross-sections and multiplicity distribution for a π−p experiment at 11.2 GeV/c. The statistics used are one-half of the total ones (106 bubble chamber pictures). Comparison with data at different energies and theoretical predictions are made, and satisfactory agreement is obtained.
TABLE ALSO QUOTES PRONG CROSS SECTIONS FOR PRODUCTION OF VEE(S).
The reaction p p → K ∗ K does not exhibit any s -channel resonance effect between 1 and 2.5 GeV/ c . On the contrary, the data on p p → K ∗∓ K ± are compatible with an exchange mechanism in the t - and u -channels above 1.5 GeV/ c . Strong similarities are found with p p → K − K + and K ∗− K ∗+ . The polarisation of K ∗± is given. The reaction p p → K ∗0 K 0 vanishes above 1.5 GeV/ c
No description provided.
LEG(L=0) = SIG/(4*PI).
LEG(L=0) = SIG/(4*PI).
The backward elastic scattering reaction π − p → p π − at momenta 25 and 38 GeV/ c have been measured using a magnetic spectrometer with hybrid chambers. The experimental data on the dependence of the cross section d σ /d u on the momentum transfer u as well as the energy dependence d σ /d u at u = 0 are given.
.
.
The reaction π + p → ϱ 0 Δ ++ (1236) at 16 GeV/ c has been studied. Cross section, differential cross section, single and joint spin-density matrix elements are given. Correlations between the ϱ 0 and Δ ++ (1236) decay distributions are observed. Unnatural spin-parity exchanges, mainly observed at small t ' values, dominate the ϱ 0 Δ ++ (1236) production. The natural exchange contributions are only (7 ± 2)% and become as important as the unnatural exchanges beyond t ' = 0.3 GeV 2 . Contributions to Δ ++ (1236) helicity 3 2 states do not exceed 20% of the total ϱ 0 Δ ++ (1236) cross section and are mainly due to unnatural exchanges.
'SLICE METHOD' USED TO HANDLE RESONANCE TAILS AND BACKGROUND.
FROM EVENTS WITHIN MASS-CUTS FOR RESONANCES AND NORMALIZED TO TOTAL CROSS SECTION.
'B'.
None
No description provided.
No description provided.
No description provided.
The differential cross section for photoproduction of π° on hydrogen has been measured in a photon energy range of 560-690 MeV and for production angles in the interval 90°-105° in the centre of mass system. The experiment detects the recoil proton and a π°-decay photon in coincidence, using optical spark chambers and a lead glass Cerenkov counter. Presented cross sections, based on 35 000 events recorded on film, are in good agreement with recent phase shift analysis.
No description provided.
No description provided.
No description provided.
None
CORRESPONDING PI+ P CROSS SECTIONS QUOTED. SECONDARY INTERACTIONS OF RHO0 AND DEL- WITH INTRANUCLEAR NUCLEONS SUPPRESSES SIG COMPARED WITH PI+ P DATA.
Exclusive photoproduction cross sections have been measured for the processes γp→π+n, γp→π0p, γp→π−Δ++, γp→ρ0p, γp→K+Λ, and γp→K+Σ0 at large t and u values at several energies for each process between 4 and 7.5 GeV. These measurements taken together with past data taken at small values of t and u provide complete angular distributions. The data show the usual small t and u peaks and a central region in which the cross section decreases approximately as s−7. The results are discussed within the context of parton or constituent models.
No description provided.
No description provided.
No description provided.
In a streamer-chamber experiment at the Stanford Linear Accelerator Center, we observed hadron production in inelastic collisions of 14-GeV positive muons in a liquid hydrogen target. We report on the experiment, the analysis, and the resulting cross sections for hadronic prongs as well as the charged-hadron multiplicity distributions.
No description provided.
No description provided.
The α-proton elastic scattering has been measured with α particles at equivalent incident proton energies of 438, 648, and 1036 MeV. A structure is observed at the position where a second minimum is expected in the differential cross section. Comparison with improved versions of the Glauber model are presented.
X ERROR D(THETA) = 0.4400 DEG.
X ERROR D(THETA) = 0.2200 DEG.
X ERROR D(THETA) = 0.4400 DEG.