We have measured the cross section, the distribution of scattering angles, and the distribution of noncoplanarity angles for electron-positron elastic scattering at 5 GeV c. m. energy. An analysis based on 230 events with scattering angles between 50 and 130° yields a ratio of the experimental to theoretical quantum-electrodynamic cross section of 1.03 ± 0.09. The scattering-angle and noncoplanarity-angle distributions are also found to be in excellent agreement with the quantum-electrodynamic predictions.
No description provided.
A systematic analysis is presented on the reaction K + p → K ∗0 (890) Δ ++ for nine incident momenta between 4.6–16.0 GeV/ c . Cross sections, differential cross sections and vector meson single density matrix elements are given. As a function of energy, little if any change is observed in either the shapes of the differential cross sections or in the values of the density matrix elements. The data are interpreted in terms of current ideas on t -channel exchange mechanisms.
No description provided.
No description provided.
No description provided.
K + p elastic scattering has been measured over nearly the whole angular range at an incident momentum of 10 GeV/ c . The differential cross-section is found to decrease smoothly in the forward direction to - t ≈ 2 (GeV/ c ) 2 , where there is a change in slope, followed by a further decrease to - t ≈ 6 (GeV/ c ) 2 . Around 90° c.m. the cross-section is approximately 1 nb/(GeV/ c ) 2 , which is more than two orders of magnitude lower than at 5 GeV/ c . The backward peak has no structure.
THESE DATA ARE REPORTED MORE FULLY IN C. BAGLIN ET AL., NP B98, 365 (1975).
The angular distribution of π + p elastic scattering has been measured at an incident momentum of 10 GeV/ c . Nearly the whole angular range was covered in one experimental set-up. The pronounced dip at − t = 2.8 (GeV/ c ) 2 , observed at lower momenta, has diminished and is essentially a shoulder at 10 GeV/ c . The other structure at larger momentum transfers are also different in detail from what we observed at 5 GeV/ c . In the 90° c.m. region the differential cross-section is approximately one nb/(GeV/ c ) 2 , which is more than two orders of magnitude lower than at 5 GeV/ c .
THESE DATA ARE REPORTED MORE FULLY IN C. BAGLIN ET AL., NP B98, 365 (1975).
The K − p → K 0 n polarization has been measured at 8 GeV/ c and for − t values ranging from 0 up tp 1.2 (GeV/ c ) 2 . A negative polarization has been found.
No description provided.
New results on the multihadron production by electron and positron beams colliding with a total energy of up to 3 GeV are reported. Disregarding possible kaon final states, the ratio σ mh / σ μμ of the total multihadron cross-section to the point-like cross section for process e + e − → μ + μ − has an average value of 1.58 ± 0.25 in the energy interval 2.6–3.0 GeV. The average charged multiplicity over this energy range is 〈 n c 〉 = 2.9 ± 0.3.
AT A MEAN ENERGY OF 2.85 GEV, THE AVERAGE MULTIHADRON CROSS SECTION IS 16.4 +- 2.6 NB (R = 1.58 +- 0.25).
By combining new results obtained at C.M. energies of 1.2 and 1.3 GeV with previous data obtained at lower energies from the e + e − annihilation process e + e − → π + π − π o π o , we get an indication in favour of the existence of a new vector meson of the ϱ type, ϱ' (1250), the first daughter of the ϱ in the predictions of the Veneziano model. Further results on the annihilation process e + e − → π (1600) → π + π − π + π − are also presented.
NOTE THAT ABOVE 1.3 GEV, THE CROSS SECTION VALUES ARE CRITICALLY DEPENDENT ON THE ASSUMPTION OF A PHASE SPACE DISTRIBUTION FOR THE FINAL STATE. NOTE ALSO THAT THE RHOPRIME(1600)0 --> RHO EPSILON(700) --> PI+ PI- PI0 PI0 RESONANT CONTRIBUTION HAS BEEN SUBTRACTED OUT. THIS CORRECTION IS GREATEST (25 PCT) AT 1.5 GEV.
The polarization parameter in π − p elastic scattering has been measured in the backward angular region at an incident momentum of 6 GeV/ c . The measurements cover the range of four momentum transfer u = 0 to −1 (GeV/ c ) 2 , and were obtained with a high intensity pion beam, a butanol polarized proton target, and arrays of scintillation counter hodoscopes. The polarization is different from zero, in contradiction to the prediction of the naive one trajectory Regge-exchange model. It increases positively with the four-momentum transfer u, reaching a maximum of about 0.4 at u ≈ −0.3 (GeV/c)2. It then decreases and becomes slightly negative beyond u ≈ −0.5 (GeV/c)2. A variety of baryon exchange models are briefly reviewed and none are found to be in complete agreement with all the experimental data.
No description provided.
Measurements of K + p elastic scattering have been carried out at 13 momenta between 432 MeV/ c and 939 MeV/ c using spark chambers. The data establish unambiguously the constructive interference of the Coulomb and nuclear amplitudes at 432 MeV/ c . The elastic cross section is found to be independent of momentum through the range covered. The phase shifts for S, P, D and F waves are obtained in an energy dependent analysis in which higher waves are held at theoretical values. The initial behaviour ofthe P, D and F amplitudes is quite close to that predicted by the calculation of the peripheral partial waves. Only the P3 and D5 amplitudes become strikingly different with increasing momentum.
COULOMB INTERFERENCE EFFECT SEEN AT SMALL ANGLES.
No description provided.
No description provided.
The reaction K−n→Σ−η has been studied near threshold. The production angular distribution and the cross-section as a function of energy were measured. The combined angular distributions of this experiment and two previous ones suggest that aJ=1/2 amplitude dominates in Σ−η production. Our cross-section can be fitted with a Σ−1η resonance of mass 1785±12 and width 89±33, or it can be fitted in a zero-effective-range scattering approximation with a scattering length of (0.92±0.12)±i(0.04±0.28) fm.
No description provided.
CROSS SECTION NEAR THRESHOLD CORRESPONDS TO A SCATTERING LENGTH OF (0.92 +- 0.12) +- I*(0.04 +- 0.28) FM.
PRODUCTION ANGULAR DISTRIBUTION - ASSUMED SYMMETRIC IN COS(THETA).