The real part of the forward amplitude for Compton scattering on protons was measured through the interference between the Compton and Bethe-Heithler amplitudes by detecting the zero-degree electron pairs asymmetrically. The measurement was made at an average photon energy of 〈k〉=2.2 GeV, and an average momentum transfer to the recoil proton 〈t〉=−0.027 (GeV/c)2. The result confirms the prediction of the Kramers-Kronig relation.
No description provided.
Differential cross sections as a function of transverse momentum are presented for the production at ∼90° (in the c.m. system) of π±, K±, p, and p¯ in p-nucleus collisions at incident proton energies of 200 and 300 GeV.
No description provided.
No description provided.
No description provided.
None
No description provided.
None
THIS HADRON PAIR CROSS SECTION PROVIDES ONLY AN UPPER LIMIT TO THE PION FORM FACTOR ABOVE 1.5 GEV SINCE KAON PRODUCTION IS NOT DISTINGUISHED.
We have measured the mean charged multiplicity n¯CH as a function of transverse momentum p⊥ of the forward proton in the reaction p+p→p+MM for five intervals of missing mass (MM) using our Multiparticle Argo Spectrometer System. We observe an increase of n¯CH for p⊥>1 GeV/c.
No description provided.
We have measured ρ0, ω (combined) and ϕ electroproduction over a range of virtual-photon four-momentum Q2 from 0.4 to 2.2 GeV2 and for photon energies ν from 2.7 to 8.6 GeV. We find that the slope of the t (momentum transfer) dependence of the ρ0 and ω forward peak decreases with increasing Q2 to less than half of the photoproduction slope.
The cross section for virtual photon are derived from E- P cross section bydividing on the virtual-photon flux factor.
Measurements of the polarization parameter of the reactions π − p → π 0 n and π − p → η n at 4.90 and 7.85 GeV/ c and for a squared four-momentum transfer − t ranging from 0.1 to 2.0 (GeV/ c ) 2 have been achieved by using a butanol polarized proton target and detecting only the two γ's from the neutral meson decay. The background due to events involving bound protons has been separately measured and subtracted out. A large positive polarization has been found for the reaction π − p → π 0 n. It is consistent with other pion-nucleon scattering data connected by isospin conservation. The polarization for the reaction π − p → η n is not significantly different from zero within the large experimental errors.
No description provided.
No description provided.
We have extracted the strong interaction form factors from K o e3 and K o μ3 data of our previously reported K o L experiment in a manner which does not assume an explicit q 2 = ( p K − p π ) 2 dependence. We present the unparameterized form factors ƒ + (q 2 ) from the K o L → πeν and K o L → πμν modes and ƒ o (q 2 ) and ξ ( q 2 ) from the K o L → πμν data. A comparison of these unparameterized results is made with the results of the Dalitz plot analyses.
The conventional form factor f+ is studied.
We have measured the differential cross section for small angle p−p scattering from 25 to 200 GeV incident energy and in the momentum transfer range 0.015<|t|<0.080 (GeVc)2. We find that the slope of the forward diffraction peak, b(s), increases with energy and can be fitted by the form b(s)=b0+2α′ lns, where b0=8.3±1.3 and α′=0.28±0.13 (GeVc)−2. Such dependence is compatible with the data existing both at higher and lower energies. We have also obtained the energy dependence of the p−p total cross section in the energy range from 48 to 196 GeV. Within our errors which are ± 1.1 mb the total cross section remains constant.
No description provided.
THE TOTAL CROSS SECTION IS NORMALIZED TO 38.5 +- 0.1 MB AT 48 GEV. IT HAS BEEN DERIVED USING THE OPTICAL THEOREM FROM THE EXTRAPOLATED FORWARD ELASTIC CROSS SECTION AND WITH ALPHA = -0.09.
We have measured the asymmetry parameter Σ=(σ∥−σ⊥)(σ∥+σ⊥) for the photoproduction of ϕ mesons with photons polarized parallel and perpendicular to the plane of decay for the reaction γp→ϕp→K+K−p. We find Σ=0.985±0.12 at a photon energy of 8.14 GeV and |t| of 0.2 (GeVc)2, consistent with pure diffraction production, or pure naturalparity Regge exchange.
No description provided.