We present measurements of forward-backward energy asymmetries of τ-lepton decay products from the reaction e+e−→τ+τ− in data collected with the MAC detector operating at the SLAC storage ring PEP at a center-of-mass energy of 29 GeV. The energy asymmetries for the decays τ→ντeν¯e, τ→ντμν¯μ, τ→ντπ, and τ→ντρ are interpreted as effects caused by the combination of maximally parity-violating weak τ decays and a longitudinal polarization produced by the interference of electromagnetic and weak processes. From the forward-backward polarization asymmetry AP=(0.06±0.07)×(1±0.011), we determine the coupling-constant product gaegvτ=(0.26 ±0.31)×(1±0.011). Assuming gae=-(1/2 as expected, we find gvτ=(-0.52±0.62)×(1±0.011), consistent with the prediction of the Glashow-Weinberg-Salam model of electroweak interactions. Alternatively, assuming the standard-model prediction of negligible polarization in τ-pair production, the leptonic energy spectra are used to measure the Michel parameter to be 0.79±0.10±0.10, consistent with the V-A hypothesis for the τν¯τ-W vertex.
No description provided.
The e + e − → μ + μ − reaction has been studied at centre of mass energies ranging between 38.3 abd 46.8 GeV with the CELLO detector at PETRA. We present results on the cross section and the charge asymmetry for this channel. Combining all the data at the average energy 〈 s 〉=43 GeV we obtain R μμ =〈 σ μμ / σ 0 〉=0.98±0.04±0.04, 〈 A μμ 〉=(−14.1±3.7±1.0)%, where σ 0 is the QED cross section and A μμ is the charge asymmetry corrected for pure radiative effects. These results are in good agreement with the expected values of R μμ =1.01 and A μμ =−14.5% at that energy.
Mu-pair cross sections.
Corrected angular distributions with data sample divided into two energy regions with means 39 and 44 GeV and total energy region.
Forward-backward asymmetry.
We present evidence for the exclusive reaction e+e−→Ds±Ds*∓, observed with the Mark III detector at the SLAC storage ring SPEAR. The Ds± is reconstructed in the φπ± decay mode, while the Ds*∓ is detected as a narrow peak in the recoil-mass distribution. The mass of the Ds* is found to be 2109.3±2.1±3.1 MeV/c2, yielding a Ds*−Ds mass difference of 137.9±2.1±4.3 MeV/c2. The width of the Ds* is <22 MeV/c2 at the 90%-confidence level. The observed signal corresponds to σ(e+e−→Ds+Ds*−+Ds−Ds*+)B(Ds+→φπ+)=30±6±11 pb at s=4.14 GeV.
No description provided.
We have searched for the lepton-flavor-violating decay D0→e±μ∓ in 204 pb−1 of e+e− annihilation data at Ec.m.=29 GeV from the Mark II detector. No candidates were found; we estimate an upper limit on the cross section times branching ratio of σ(e+e−→D0,D¯0; inclusive)B(D0→e±μ∓)<0.35 pb at the 90% confidence level. Simple assumptions yield the rough limit B(D0→e±μ∓)<2.1×10−3. AE.
No description provided.
The inclusive production of D ∗± mesons in single tagged photon-photon collisions is investigated using the JADE detector at PETRA. D ∗± mesons are reconstructed through their decay into D 0 +π ± where the D 0 decays via D 0 →Kππ 0 . The event rate and topology are compared to the expectations of c quark production in the quark-parton model: γγ→c c .
No description provided.
Results on hyperon production are reported for data accumulated at 10 GeV centre-of-mass energy with the ARGUS detector. Signals for both the octet states Λ, Σ 0 and Ξ − and the decuplet states Σ ± (1385), Ξ 0 (1530) and Ω − are observed 1 (references to a specific state are to be interpreted as also implying the charge conjugate state), some for the first time in e + e − annihilation. Baryon rates from γ dir (1S) decays are enhanced by a factor of about 3 over the continuum.
No description provided.
No description provided.
We have measured the total normalized cross section R for the process e + e − → hadrons at centre-of-mass energies between 14.0 and 46.8 GeV based on an integrated luminosity of 60.3 pb −1 . The data are well described by the standard SU(3) c ⊗SU(2) L ⊗U(1) model with the production of the five known quarks. No open production of a sixth quark with charge 2/3 or 1/3 occurs below a centre-of-mass energy of 46.6 or 46.3 GeV, respectively. A fitting procedure which takes the correlations between measurements into account was used to determine the electroweak mixing angle sin 2 θ w and the strong coupling constant α s ( S ) in second-order QCD. We applied this procedure to the CELLO data and in addition included the data from other experiments at PETRA and PEP. Both fits give consistent results. The fit to the combined data yields α s (34 2 GeV 2 ) = 0.165±0.030, and sin 2 θ w = 0.236±0.020. Fixing sin 2 θ w at the world average value of 0.23 yields α s (34 2 GeV 2 ) = 0.169±0.025.
No description provided.
No description provided.
Inclusive Ξ− production in e+e− annihilation at 29 GeV has been measured with the Mark II detector. From an integrated luminosity of 207 pb−1, we determine a production rate of 0.017±0.004±0.004 Ξ−+Ξ¯+ per hadronic event. A search for Ξ*0(1530)→Ξ−π+ leads to an upper limit of N(Ξ*0)/N(Ξ−)<0.35 at a 90% confidence level.
Numerical values supplied by S. Klein.
Extrapolation over full x range using LUND Monte Carlo.
A charge asymmetry has been observed in final-state jets from e+e− annihilation into hadrons at √s =29 GeV. The measured asymmetry is consistent with the prediction of electroweak theory. The product of axial-vector weak coupling constants, averaged over all quark flavors, is determined to be 〈gAegAq〉=-0.34±0.06±0.05.
Measured differential cross section after efficiency and radiative cross sections. THETA is the polar-angle of the thrust axis defined to be the angle between the direction of the incident positron and the thrust axis taken in the direction of the positron jet. Numerical values requested from the authors. Data are normalised to the total expected QED cross section.
We have made a detailed comparison of the charged-particle flow in three-jet events (e+e−→qq¯g) and radiative two-jet events (e+e−→qq¯γ) from e+e− annihilation at Ec.m.=29 GeV. Accurate comparisons can be made because these two event types have similar topologies. In the angular region between the quark and antiquark jets, we observe substantially fewer charged tracks in the two-jet events than in the radiative three-jet events.
No description provided.
No description provided.
No description provided.