The proton-nucleon cross section ratio $R=Br(\Upsilon\to l^+l^-) d\sigma(\Upsilon)/dy|_{y=0} / {\sigma(J/\psi)}$ has been measured with the HERA-B spectrometer in fixed-target proton-nucleus collisions at 920 GeV proton beam energy corresponding to a proton-nucleon cms energy of sqrt{s}=41.6 GeV. The combined results for the Upsilon decay channels Upsilon $\to e^+e^-$ and Upsilon $\to\mu^+\mu^-$ yield a ratio $R=(9.0 \pm 2.1) 10^{-6}$. The corresponding Upsilon production cross section per nucleon at mid-rapidity (y=0) has been determined to be $Br(\Upsilon\to{}l^+l^-) {d\sigma(\Upsilon)/dy}|_{y=0}= 4.5 \pm 1.1 $ pb/nucleon.
Ratio of the UPSILON production cross section to the total J/PSI production cross section in P NUCLEON interactions for the E+ E- and MU+ MU- channels separately and combined. The total uncertainty is indicated for the combined results.
UPSILON production cross section at midrapidity in P NUCLEON interactions for the E+ E- and MU+ MU- channels separately and combined. The total uncertainty is indicated for the combined results.
A tagged medium-energy neutron beam has been used in a precise measurement of the absolute differential cross section for np back-scattering. The results resolve significant discrepancies within the np database concerning the angular dependence in this regime. The experiment has determined the absolute normalization with 1.5% uncertainty, suitable to verify constraints of supposedly comparable precision that arise from the rest of the database in partial wave analyses. The analysis procedures, especially those associated with evaluation of systematic errors in the experiment, are described in detail so that systematic uncertainties may be included in a reasonable way in subsequent partial wave analysis fits incorporating the present results.
Final differential cross sections averaged over data samples.
We study the processes e+ e- --> 3(pi+pi-)gamma, 2(pi+pi-pi0)gamma and K+ K- 2(pi+pi-)gamma, with the photon radiated from the initial state. About 20,000, 33,000 and 4,000 fully reconstructed events, respectively, have been selected from 232 fb-1 of BaBar data. The invariant mass of the hadronic final state defines the effective e+e- center-of-mass energy, so that these data can be compared with the corresponding direct e+e- measurements. From the 3(pi+pi-), 2(pi+pi-pi0) and K+ K- 2(pi+pi-) mass spectra, the cross sections for the processes e+ e- --> 3(pi+pi-), e+ e- --> 2(pi+pi-pi0) and e+ e- --> K+ K- 2(pi+pi-) are measured for center-of-mass energies from production threshold to 4.5 GeV. The uncertainty in the cross section measurement is typically 6-15%. We observe the J/psi in all these final states and measure the corresponding branching fractions.
The cross section for E+ E- --> 3PI+ 3PI- as measured with the ISR data. Errors are statistical only.
The cross section for E+ E- --> 2PI+ 2PI- 2PI0 as measured with the ISR data. Errors are statistical only.
The cross section for E+ E- --> K+ K- 2PI+ 2PI- as measured with the ISR data. Errors are statistical only.
The cross sections for charged and neutral current deep inelastic scattering in e^+p collisions with a longitudinally polarised positron beam have been measured using the ZEUS detector at HERA. The results, based on data corresponding to an integrated luminosity of 23.8 pb^-1 at sqrt(s) = 318 GeV, are given for both e^+p charged current and neutral current deep inelastic scattering for both positive and negative values of the longitudinal polarisation of the positron beam. Single differential cross sections are presented for the kinematic region Q^2 > 200 GeV^2 . The measured cross sections are compared to the predictions of the Standard Model. A fit to the data yields sigma^CC (P_e = -1) = 7.4 +/- 3.9 (stat.) +/- 1.2 (syst.) pb, which is consistent within two standard deviations with the absence of right-handed charged currents in the Standard Model.
Total cross sections for the E+ P CC DIS at Q**2 > 200 GeV for the two different longitudinal positron polarizations and extrapolated with a linear fit to a polarization of -1.0 (including earlier unpolarized data).
E+ P CC DIS cross section as a function of Q**2.
E+ P CC DIS cross section as a function of X.
The ep -> e'pi^+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time the absolute cross sections were measured covering nearly the full angular range in the hadronic center-of-mass frame. The structure functions sigma_TL, sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by fitting the phi-dependence of the measured cross sections, and were compared to the MAID and Sato-Lee models.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.11 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.13 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.15 GeV.
Hyperon production in the threshold region was studied in the reaction pp→K+Λp using the time-of-flight spectrometer COSY-TOF. Exclusive data, covering the full phase-space, were taken at three different beam momenta pbeam=2.59 , 2.68 and 2.85 GeV/ c (corresponding to excess energies of ɛ=85 , 115 and 171 MeV). Total cross-sections were deduced to be 7.4±0.5 μb , 8.6±0.6 μb and 16.5±0.4 μb , respectively. Differential observables including Dalitz plots were obtained. From the investigation of the Dalitz plot at pbeam=2.85 GeV/c a dominant contribution of the N∗(1650) -resonance to the reaction mechanism was found. In addition the pΛ -final-state interaction turned out to have a significant influence on the Dalitz plot distribution even 171 MeV above threshold.
Measured total cross sections.
Distribution of the invariant mass of the P-LAMBDA subsystem at beam momentum 2.85 GeV.
Distribution of the invariant mass of the K-LAMBDA subsystem at beam momentum 2.85 GeV.
Deep-inelastic ep scattering data taken with the H1 detector at HERA and corresponding to an integrated luminosity of 106 pb^{-1} are used to study the differential distributions of event shape variables. These include thrust, jet broadening, jet mass and the C-parameter. The four-momentum transfer Q is taken to be the relevant energy scale and ranges between 14 GeV and 200 GeV. The event shape distributions are compared with perturbative QCD predictions, which include resummed contributions and analytical power law corrections, the latter accounting for non-perturbative hadronisation effects. The data clearly exhibit the running of the strong coupling alpha_s(Q) and are consistent with a universal power correction parameter alpha_0 for all event shape variables. A combined QCD fit using all event shape variables yields alpha_s(mZ) = 0.1198 \pm 0.0013 ^{+0.0056}_{-0.0043} and alpha_0 = 0.476 \pm 0.008 ^{+0.018} _{-0.059}.
Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 14.0 to 16.0 GeV and X = 0.00841 .
Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 16.0 to 20.0 GeV and X = 0.01180 .
Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 20.0 to 30.0 GeV and X = 0.02090 .
Differential cross sections for the reaction gamma p -> eta-prime p have been measured with the CLAS spectrometer and a tagged photon beam with energies from 1.527 to 2.227 GeV. The results reported here possess much greater accuracy than previous measurements. Analyses of these data indicate for the first time the coupling of the etaprime N channel to both the S_11(1535) and P_11(1710) resonances, known to couple strongly to the eta N channel in photoproduction on the proton, and the importance of j=3/2 resonances in the process.
Differential cross sections for ETAPRIME photoproduction on the proton at photon energies 1.527, 1.577 and 1.627 GeV. The errors shown are combined statistical and systematic.
Differential cross sections for ETAPRIME photoproduction on the proton at photon energies 1.677, 1.728 and 1.779 GeV. The errors shown are combined statistical and systematic.
Differential cross sections for ETAPRIME photoproduction on the proton at photon energies 1.829, 1.879 and 1.930 GeV. The errors shown are combined statistical and systematic.
We present a measurement of the inclusive jet cross section in ppbar interactions at sqrt{s}=1.96 TeV using 385 pb^{-1} of data collected with the CDF II detector at the Fermilab Tevatron. The results are obtained using an improved cone-based jet algorithm (Midpoint). The data cover the jet transverse momentum range from 61 to 620 GeV/c, extending the reach by almost 150 GeV/c compared with previous measurements at the Tevatron. The results are in good agreement with next-to-leading order perturbative QCD predictions using the CTEQ6.1M parton distribution functions.
The inclusive jet cross section corrected to the hadron level.
The inclusive jet cross section corrected to the parton level.
The e+e- -> p anti-p cross section is determined over a range of p anti-p masses, from threshold to 4.5 GeV/c^2, by studying the e+e- -> p anti-p gamma process. The data set corresponds to an integrated luminosity of 232 fb^-1, collected with the BABAR detector at the PEP-II storage ring, at an e+e- center-of-mass energy of 10.6 GeV. The mass dependence of the ratio of electric and magnetic form factors, |G_E/G_M|, is measured for p anti-p masses below 3 GeV/c^2: its value is found to be significantly larger than 1 for masses up to 2.2 GeV/c^2. We also measure J/psi -> p anti-p and psi(2S) -> p anti-p branching fractions and set an upper limit on Y(4260) -> p anti-p production and decay.
The cross section and effective form factor for E+ E- --> PBAR P.
The cross section and effective form factor for E+ E- --> PBAR P.