We have measured the polarization of $\Lambda$ hyperons produced inclusively by a $\Sigma^-$ beam of 340 GeV/c momentum in nuclear targets. From a sample of 9.5 millions of identified $\Lambda$ decays, polarizations were determined in the range $x_F \gt 0.1$ and $p_t\leq 1.6$ GeV/c . The polarization w.r.t. the production normal is mainly positive for $x_F \geq 0.3$. At fixed values of $x_F$, it increases with $p_t$ to a maximum between $p_t = 0.5$ and $p_t = 1$ GeV/c , and then decreases to zero or even negative values, in sharp contrast to the plateau above $p_t = 1$ GeV/c observed in inclusive $\Lambda$ production by protons.
Measured values of the LAMBDA polarization as a function of PT in the XL range 0.1 to 0.2.
Measured values of the LAMBDA polarization as a function of PT in the XL range 0.2 to 0.3.
Measured values of the LAMBDA polarization as a function of PT in the XL range 0.3 to 0.4.
We show that Σ+ hyperons produced by 800 GeV/c protons on targets of Be and Cu have significant polarizations (15–20%). These polarizations persist at values of pt≈2 GeV/c and a wide range of xF. The polarizations from the Cu target are consistently less than from Be. The average ratio of the Σ+ polarization from Cu to that from Be is 0.68±0.08.
Measured values of the SIGMA+ polarization as functions of PT and XL for proton CU collisions.
Measured values of the SIGMA+ polarization as functions of PT and XL for proton BE collisions.
The diffractive photoproduction of J/psi mesons is measured with the H1 detector at the ep collider HERA using an integrated luminosity of 78 pb^-1. The differential cross section d sigma(gamma p -> J/psi Y) / d t is studied in the range 2 < |t| < 30 GeV^2, where t is the square of the four-momentum transferred at the proton vertex. The cross section is also presented as a function of the photon-proton centre-of-mass energy W in three t intervals, spanning the range 50 < W < 200 GeV. A fast rise of the cross section with W is observed for each t range and the slope for the effective linear Pomeron trajectory is measured to be alpha^\prime= -0.0135 \pm 0.0074 (stat.) \pm 0.0051 (syst.) GeV^-2. The measurements are compared with perturbative QCD models based on BFKL and DGLAP evolution. The data are found to be compatible with s-channel helicity conservation.
The differential photoproduction cross section DSIG/DT for diffractive J/PSI production.
The J/PSI photoproduction cross section as a function of W for the ABS(T) range 2 to 5 GeV**2.
The J/PSI photoproduction cross section as a function of W for the ABS(T) range 5 to 10 GeV**2.
Diffractive photoproduction of vector mesons, gamma p --> V Y, where Y is a proton-dissociative system, has been measured in ep interactions with the ZEUS detector at HERA using an integrated luminosity of 25 pb^-1. The differential cross section, ds/dt, is presented for -t<12 GeV^2, where t is the square of the four-momentum transferred to the vector meson. The data span the range in photon-proton centre-of-mass energy, W, from 80 GeV to 120 GeV. The t distributions are well fit by a power law, ds/dt ~ (-t)^{-n}. The slope of the Pomeron trajectory, measured from the W dependence of the rho^0 and phi cross sections in bins of t, is consistent with zero. The ratios ds_(gamma p --> phi Y)/dt to ds_(gamma p --> rho^0 Y)/dt and ds_(gamma p --> J/psi Y)/dt to ds_(gamma p --> rho^0 Y)/dt increase with increasing -t. Decay-angle analyses for rho^0, phi and J/psi mesons have been carried out. For the rho^0 and phi mesons, contributions from single and double helicity flip are observed. The results are compared to expectations of theoretical models.
Differential cross section for RHO0 production. The second DSYS error is due to the modelling of the proton-dissociation process.
Differential cross section for PHI production. The second DSYS error is due to the modelling of the proton-dissociation process.
Differential cross section for J/PSI production. The second DSYS error is due to the modelling of the proton-dissociation process.
The helicity structure of the diffractive electroproduction of rho mesons, e + p -> e + rho + Y, is studied in a previously unexplored region of large four-momentum transfer squared at the proton vertex, t: 0 < t' < 3 GeV^2, where t' = |t| - |t|_min. The data used are collected with the H1 detector at HERA in the kinematic domain 2.5 < Q^2 < 60 GeV^2, 40 < W < 120 GeV. No t dependence of the r^04_00 spin density matrix element is found. A significant t dependent helicity non-conservation from the virtual photon to the rho meson is observed for the spin density matrix element combinations r^5_00+2r^5_11 and r^1_00+2r^1_11. These t dependences are consistently described by a perturbative QCD model based on the exchange of two gluons.
Measurements of the combinations of spin density matrices as a function of TP = |T| - |Tmin|, where |Tmin| is the minimal values of |T| kinematically required for the vector meson and the system X to aquire their effective mass through longitudinal momentum transfer.
The exclusive photoproduction of J/psi mesons, gamma p->J/psi p, has been studied in ep collisions with the ZEUS detector at HERA, in the kinematic range 20<W<290 GeV, where W is the photon-proton centre-of-mass energy. The J/psi mesons were reconstructed in the muon and the electron decay channels using integrated luminosities of 38 pb^-1 and 55 pb^-1, respectively. The helicity structure of J/psi production shows that the hypothesis of s-channel helicity conservation is satisfied at the two standard-deviation level. The total cross section and the differential cross-section dsigma/dt, where t is the squared four-momentum transfer at the proton vertex, are presented as a function of W, for |t|<1.8 GeV^2. The t distribution exhibits an exponential shape with a slope parameter increasing logarithmically with W with a value b=4.15 \pm 0.05 (stat.)^{+0.30}_{-0.18} (syst.) GeV^-2 at W=90 GeV. The effective parameters of the Pomeron trajectory are alphapom(0) = 1.200 \pm 0.009(stat.)^{+0.004}_{-0.010}(syst.) and alphappom= 0.115 \pm 0.018(stat.)^{+0.008}_{-0.015}(syst.) GeV^-2.
The total exclusive J/PSI photoproduction cross section, the differential cross section extrapolated to t=0 and the slope parameter of the exponential t dependence as afunction of W, the photon-proton c.m. energy, for data from J/PSI muon decay.
The total exclusive J/PSI photoproduction cross section as a function of W,the photon-proton c.m. energy, for data from J/PSI electron decays.
The differential cross section extrapolated to t=0 and the slope parameter of the exponential t dependence for exclusive J/PSI photoproduction as a function of W, the photon-proton c.m. energy for data from J/PSI electron decays.
We report on measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential cross sections (d2σ/dpTdy)|y|<0.4, as well as on the ϒ(1S) polarization in pp¯ collisions at s=1.8TeV using a sample of 77±3pb−1 collected by the collider detector at Fermilab. The three resonances were reconstructed through the decay ϒ→μ+μ−. The measured angular distribution of the muons in the ϒ(1S) rest frame is consistent with unpolarized meson production.
The differential cross section times the branching ratio into mu+ mu- for UPSILON(1S) production.
The differential cross section times the branching ratio into mu+ mu- for UPSILON(2S) production. The first DSYS error is the systematic error due to the polarization of the UPSILON which is shown seperately from the other systematic errors.
The differential cross section times the branching ratio into mu+ mu- for UPSILON(3S) production. The first DSYS error is the systematic error due to the polarization of the UPSILON which is shown seperately from the other systematic errors.
We present a measurement of the polarization of Antilambda hyperons produced in nu_mu charged current interactions. The full data sample from the NOMAD experiment has been analyzed using the same V0 identification procedure and analysis method reported in a previous paper for the case of Lambda hyperons. The Antilambda polarization has been measured for the first time in a neutrino experiment. The polarization vector is found to be compatible with zero.
Lambdabar polarization in regions of Feynman X (XL).
Lambdabar polarization in regions of the Bjorken scaling variable X.
Polarization transfer in the 4He(e,e'p)3H reaction at a Q^2 of 0.4 (GeV/c)^2 was measured at the Mainz Microtron MAMI. The ratio of the transverse to the longitudinal polarization components of the ejected protons was compared with the same ratio for elastic ep scattering. The results are consistent with a recent fully relativistic calculation which includes a predicted medium modification of the proton form factor based on a quark-meson coupling model.
No description provided.
No description provided.
The elastic electroproduction of phi mesons is studied at HERA with the H1 detector for photon virtualities 1 < Q^2 < 15 GeV^2 and hadronic centre of mass energies 40 < W < 130 GeV. The Q^2 and t dependences of the cross section are extracted (t being the square of the four-momentum transfer to the target proton). When plotted as function of (Q^2 + M_V^2) and scaled by the appropriate SU(5) quark charge factor, the phi meson cross section agrees within errors with the cross sections of the vector mesons V = rho, omega and J/psi. A detailed analysis is performed of the phi meson polarisation state and the ratio of the production cross sections for longitudinally and transversely polarised phi mesons is determined. A small but significant violation of s-channel helicity conservation (SCHC) is observed.
The measured ratio of PHI to RHO0 production.
The cross section for elastic PHI meson electro-production calculated by multiplying the PHI/RHO0 cross section ratio by the RHO0 cross section accurately measured in the earlier H1 publication (EPJ C13,371).
The corrected T distribution of elastic PHI meson production for W around 75 GeV and Q2 in the range 2.5 to 15 GeV**2 (mean = 4.8 GeV**2). Statistical error only.