A Measurement of Strong Coupling Constant $\alpha_s$ to Second Order for 14-{GeV} $\le \sqrt{s} \le$ 46.78-{GeV}

The MARK-J collaboration Adeva, B. ; Becker, U. ; Becker-Szendy, R. ; et al.
Phys.Rev.Lett. 54 (1985) 1750, 1985.
Inspire Record 208007 DOI 10.17182/hepdata.20386

Using the Mark-J detector at the high-energy e+e− collider PETRA, we compare the data from hadron production with the complete second-order QCD calculation over the energy region 22 to 46.78 GeV. We determine the QCD parameter Λ=100±30−45+60 MeV which yields the strong-coupling constant αs=0.12±0.02 for s=44 GeV.

2 data tables match query

No description provided.

Axis error includes +- 0.0/0.0 contribution (DUE TO FRAGMENTATION MODEL).


A Measurement of the Strong Coupling Constant $\alpha^- s$ to Complete Second Order

The Mark-J collaboration Adeva, B. ; Anderhub, H. ; Ansari, S. ; et al.
Phys.Lett.B 180 (1986) 181-184, 1986.
Inspire Record 231302 DOI 10.17182/hepdata.6535

The strong interaction coupling constant α s has been measured with a new method, the planar triple energy correlation in the reaction e + e - → hadrons at center-of-mass energies ranging from 14 GeV to 46.78 GeV. A complete second-order perturbative QCD calculation was used. Λ MS = 110 ± 30 −55 +70 MeV is found.

3 data tables match query

No description provided.

No description provided.

No description provided.


Measurements of Energy Correlations in $e^+ e^- \to$ Hadrons

The JADE collaboration Bartel, W. ; Becker, L. ; Bowdery, C. ; et al.
Z.Phys.C 25 (1984) 231, 1984.
Inspire Record 202784 DOI 10.17182/hepdata.1998

Energy-energy-correlations (EEC) have been measured with the JADE detector at c.m. energies of 14 GeV, 22 GeV and in the region 29 GeV<Ecm<36 GeV. Corrected results are presented of EEC and their asymmetry, which can be directly compared to theoretical predictions. At 〈Ecm〉=34 GeV a comparison with second order QCD predictions yields good agreement for the string model fragmentation resulting in a value of the strong coupling constant αs=0.165±0.01 (stat.). The independent fragmentation models, which yield values of αs between 0.10 and 0.15 depending on the treatment of energy and momentum conservation and of the gluon splitting, do not provide a satisfactory description of the data over the full angular range.

3 data tables match query

TABLES GIVEN HERE CONTAIN SELF CORRELATION. THIS IS SUBTRACTED IN THE FIGURE.

VALUE OF ASSYMETRY IN CORRELATIONS.

No description provided.


Tests of Quantum Chromodynamics and a Direct Measurement of the Strong Coupling Constant $\alpha_S$ at $\sqrt{s}=30$-{GeV}

Barber, D.P. ; Becker, U. ; Benda, H. ; et al.
Phys.Lett.B 89 (1979) 139-144, 1979.
Inspire Record 143680 DOI 10.17182/hepdata.6483

We report the measurement of the reaction e + + e − → hadronic jets at a center-of-mass energy √ s =30 GeV using the MARK-J detector at PETRA. By measuring the energy and angular distribution of both neutrals and charged particles we were able to isolate unambiguously the three-jet events in a kinematic region where the backgrounds from q q and phase space contributions and other processes are small. Various comparisons of the data with quantum chromodynamics were made. The relative yield of three-jet events and the shape distribution of the events enable us to determine α s = 0.23 ± 0.02 (statistical error) with a systematic error of ± 0.04.

2 data tables match query

OBLATENESS AND THRUST DISTRIBUTIONS FOR NARROW AND BROAD JETS AT 30 GEV. THESE DATA ARE SOMEWHAT ANALYSIS AND DETECTOR DEPENDENT.

No description provided.


A Model Independent Second Order Determination of the Strong Coupling Constant $\alpha^- s$

Adeva, B. ; Barber, D.P. ; Becker, U. ; et al.
Phys.Rev.Lett. 50 (1983) 2051, 1983.
Inspire Record 189724 DOI 10.17182/hepdata.3086

With use of the MARK-J detector at s=34.7 GeV 21 000 e+e−→hadron events have been collected. By measurement of the asymmetry in angular energy correlations the strong coupling constant αs=0.13±0.01 (statistical)±0.02 (systematic) is determined, in complete second order, and independent of the fragmentation models and QCD cutoff values used.

2 data tables match query

DATA REQUESTED FROM THE AUTHORS.

No description provided.


Precise Measurement of Total Cross-Sections for the Process e+ e- ---> Multi-Hadrons in the Center-Of-Mass Energy Range Between 12.0-GeV and 36.4-GeV

The JADE collaboration Bartel, W. ; Becker, L. ; Bowdery, C. ; et al.
Phys.Lett.B 129 (1983) 145-152, 1983.
Inspire Record 191159 DOI 10.17182/hepdata.6639

The total cross section for the process e + e − → hadrons has been measured in the CM energy range between 12.0 and 36.4 GeV using the JADE detector with a typical systematic error of ±3%. The ratio R( σ( ee → hadrons ) σ pt ) is found to be constant over this range with an average value of 3.97 ± 0.05 (statistical and point-to-point systematic error) ± 0.10 (normalization error). The data were compared with the standard electro-weak interaction model including QCD corrections.

2 data tables match query

ERRORS ARE STATISTICAL PLUS POINT TO POINT SYSTEMATICS. THERE IS AN ADDITIONAL 2.4 PCT OVERALL NORMALIZATION ERROR.

No description provided.


A Measurement of energy correlations and a determination of alpha-s (M2 (Z0)) in e+ e- annihilations at s**(1/2) = 91-GeV

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 252 (1990) 159-169, 1990.
Inspire Record 298707 DOI 10.17182/hepdata.29525

From an analysis of multi-hadron events from Z 0 decays, values of the strong coupling constant α s ( M 2 Z 0 )=0.131±0.006 (exp)±0.002(theor.) and α s ( M z 0 2 ) = −0.009 +0.007 (exp.) −0.002 +0.006 (theor.) are derived from the energy-energy correlation distribution and its asymmetry, respectively, assuming the QCD renormalization scale μ = M Z 0 . The theoretical error accounts for differences between O ( α 2 s ) calculations. A two parameter fit Λ MS and the renormalization scale μ leads to Λ MS =216±85 MeV and μ 2 s =0.027±0.013 or to α s ( M 2 Z 0 )=0.117 +0.006 −0.008 (exp.) for the energy-energy correlation distribution. The energy-energy correlation asymmetry distribution is insensitive to a scale change: thus the α s value quoted above for this variable includes the theoretical uncertainty associated with the renormalization scale.

3 data tables match query

Data are at the hadron level, unfolded for initial-state radiation and for detector acceptance and resolution. Note that the systematic errors between bins are correlated.

Alpha-s determined from the EEC measurements. The systematic error is an error in the theory.

Alpha-s determined from the AEEC measurements. The systematic error is an error in the theory.


A Study of the recombination scheme dependence of jet production rates and of alpha-s (m(Z0)) in hadronic Z0 decays

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 49 (1991) 375-384, 1991.
Inspire Record 299833 DOI 10.17182/hepdata.15085

The error includes the experimental uncertainties (±0.003), uncertainties of hadronisation corrections and of the degree of parton virtualities to which the data are corrected, as well as the uncertainty of choosing the renormalisation scale.

9 data tables match query

Jet production rates using the E0 recombination scheme.

Jet production rates using the E recombination scheme.

Jet production rates using the p0 recombination scheme.

More…

An Improved measurement of alpha-s (M (Z0)) using energy correlations with the OPAL detector at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 276 (1992) 547-564, 1992.
Inspire Record 321657 DOI 10.17182/hepdata.29245

We report on an improved measurement of the value of the strong coupling constant σ s at the Z 0 peak, using the asymmetry of the energy-energy correlation function. The analysis, based on second-order perturbation theory and a data sample of about 145000 multihadronic Z 0 decays, yields α s ( M z 0 = 0.118±0.001(stat.)±0.003(exp.syst.) −0.004 +0.0009 (theor. syst.), where the theoretical systematic error accounts for uncertainties due to hadronization, the choice of the renormalization scale and unknown higher-order terms. We adjust the parameters of a second-order matrix element Monte Carlo followed by string hadronization to best describe the energy correlation and other hadronic Z 0 decay data. The α s result obtained from this second-order Monte Carlo is found to be unreliable if values of the renormalization scale smaller than about 0.15 E cm are used in the generator.

2 data tables match query

Value of LAMBDA(MSBAR) and ALPHA_S.. The first systematic error is experimental, the second is from theory.

The EEC and its asymmetry at the hadron level, unfolded for initial-state radiation and for detector acceptance and resolution. Errors include full statistical and systematic uncertainties.


Study of hadronic events and measurements of alpha(s) between 30-GeV and 91-GeV.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 411 (1997) 339-353, 1997.
Inspire Record 445998 DOI 10.17182/hepdata.47465

We have studied the structure of hadronic events with a hard, isolated photon in the final state (e + e − → Z → hadrons + γ) in the 3.6 million hadronic events collected with the L3 detector at centre-of-mass energies around 91 GeV. The centre-of-mass energy of the hadronic system is in the range 30 GeV to 86 GeV. Event shape variables have been measured at these reduced centre-of-mass energies and have been compared with the predictions of different QCD Monte Carlo programs. The event shape variables and the energy dependence of their mean values are well reproduced by QCD models. We fit distributions of several global event shape variables to resummed O (α s 2 ) calculations to determine the strong coupling constant α s over a wide range of energies. We find that the strong coupling constant α s decreases with increasing energy, as expected from QCD.

6 data tables match query

No description provided.

No description provided.

No description provided.

More…