The results presented in this paper are obtained from an analysis of bubble-chamber pictures of K−d interactions at an incident K− momentum of 5.5 GeV/c. Generally, the quasitwo-body final states are produced peripherally, with a small backward peak occurring in some of the final states. The final states Σ−ω, Σ−ρ0, and Σ−φ appear to be produced primarily by vector-meson exchange. In the final state Λ(1520)π− the decay distributions of the Λ(1520) hyperon are found to be consistent with a vector-exchagne production process with M2 coupling at the nucleon vertex. The predictions of the independent-quark model and of other symmetry schemes, namely that the forward cross sections for Σ−ρ0, Σ−ω, Σ−φ production be in the ratios 1: 1: 2, are not inconsistent with our experimental values.
No description provided.
FRACTIONAL FORWARD HYPERON CROSS SECTION AFTER BACKGROUND SUBTRACTION.
No description provided.
We observe an energy-dependent polarization of the Σ+ produced in the reaction π+n→K0Σ+ at incident beam momenta between 1.1 and 2.4 GeV/c. These data form a significant source of information on the Σ− polarization in the charge-symmetric reaction π−p→K+Σ−.
INTEGRATED OVER ALL PRODUCTION ANGLES.
No description provided.
We have studied η′ production using a π+ beam incident on deuterium in the 72-in. bubble chamber, with beam momenta from 1.1 to 2.4 GeVc. Cross sections for reactions leading to five- and six-pronged final states are presented. We observe η′ production in the reaction π+d→ppη′, with the decay mode η′→π+π−η. The cross section for π+n→pη′ (studied in the impulse approximation) is observed to rise to a maximum of about 100 μb at 2.2-GeV c.m. energy. The production angular distribution develops peripheral peaking with increasing energy.
No description provided.
The results of an experiment performed at Adone, the 2×1.5-GeV e+e− Frascati storage ring, are presented. During ∼ 1500 hours of running time a total of 5164 electron-positron elastic scattering events (integrated luminosity L=3.5×1035 cm−2) and 605 noncoplanar events from the reaction e+e−→a±+b±+anything (effective integrated luminosity L=2.5×1035 cm−2) have been collected at c.m. energies ranging from 1.4 to 2.4 GeV. Over the energy range explored (1.4-2.4 GeV), corresponding to an average q2 ranging from 0.8 to 2.4 (GeV/c)2, the yield of wide-angle (60°<θ<120°) electron-positron elastic scattering events is found to be in good agreement with the predictions of quantum electrodynamics (QED) (R=σexpσQED=1.05±0.04). The noncoplanar events appear to be of a hadronic nature and are produced with a much higher cross section than predicted on the basis of ρ, ω, φ dominance at these energies. The total cross section for the reaction e+e−→a±b±+anything shows a rapid increase to ∼ 90 nb between 1.0 and 1.5 GeV and falls off slowly to ∼ 50 nb at 2.4 GeV. Cross sections for some of the channels contributing to this multihadron process (e+e−→π+π−π+π−, e+e−→π+π−π+π−+neutrals, e+e−→3π+3π−) have been determined and are reported.
DATA VALUES MEASURED FROM GRAPH IN JOURNAL.
VALUES OF R CALCULATED FROM TOTAL CROSS SECTION.
We report a search for quasistable particles with anomalous charge or large mass produced by the interaction of 300-GeV protons at the National Accelerator Laboratory. Analyses of energy losses in a counter telescope lead to cross-section limits of 10−35 cm2 for particles with charges of e3 and 2e3 and 5×10−31 cm2 for charge-4e3 particles. Time-of-flight measurements gave cross-section limits of about 10−31 cm2 for the production of massive charged particles.
No description provided.
We have measured the total cross section for electron-positron annihilation into three or more hadrons, with at least two charged particles in the final state. The measurement was made at a center-of-mass energy of 4 GeV with a 2π−sr nonmagnetic detector. With 88 events detected, we obtain a model-independent lower limit on the hadron production cross section of 9.6 ± 1.4 nb; a calculation of detection efficiency based on invariant phase-space production of pions leads to a total cross section of 26 ± 6 nb. This cross section is 4.7 ± 1.1 times the theoretical total cross section for e+e−→μ+μ−. The average charged multiplicity is n¯=4.2±0.6.
No description provided.
The asymmetry A = (σ + −σ − ) (σ + +σ − ) of the reaction γ p↑↓ → π 0 p was measured at the Deutsches Elektronen Synchrotron DESY, Hamburg at a mean photon energy of 4.0 GeV in the four-momentum transfer range 0.2 (GeV/ c ) 2 ⩽ −t ⩽ 1.1 (GeV/ c ) 2 in steps of approximately 0.08 (GeV/ c ) 2 . The π 0 -meson and the proton were detected in coincidence. The asymmetry is compatible with zero in the t -range 0.2 (GeV/ c ) 2 ⩽ − t ⩽ 0.4 (GeV/ c ) 2 and negative in the t -range ⩾ 0.5 (GeV/ c ) 2 .
No description provided.
The inclusive production al all charged particles of transverse momentum p T between 1.5 and 4.4 GeV/ c at centre of mass angles 90° and 59.4° from p-p-collisions with √ s = 44 and 53 GeV has been measured. No strong energy dependence is observed for these transverse momenta.
Errors are statistical only.
Errors are statistical only.
Errors are statistical only.
Production and decay characteristics of electroproduced rho mesons were studied in the final state epπ + π − .
No description provided.
For the reaction π + p → ωΔ ++ data on the total cross section ( σ = 61 ± 12 μ b), differential cross sections, spin density matrix elements and statistical tensor elements are given. We observe natural and unnatural parity exchange contributions to the total cross section. We note that the value of ϱ 00 is not zero and in the helicity frame exhibits a dip at t ≈ −0.25 (GeV/ c ) 2 . A qualitative theoretical discussion of our results is presented.
CORRECTED FOR BACKGROUND, RESONANCE TAILS AND UNSEEN OMEGA DECAY MODES.
NORMALIZED TO THE TOTAL CROSS SECTION. SOME BACKGROUND IS PRESENT.
NORMALIZED TO THE TOTAL CROSS SECTION. SOME BACKGROUND IS PRESENT.