Measurement of charged particle multiplicities and densities in $pp$ collisions at $\sqrt{s}=7\;$TeV in the forward region

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
Eur.Phys.J.C 74 (2014) 2888, 2014.
Inspire Record 1281685 DOI 10.17182/hepdata.63498

Charged particle multiplicities are studied in proton-proton collisions in the forward region at a centre-of-mass energy of $\sqrt{s} = 7\;$TeV with data collected by the LHCb detector. The forward spectrometer allows access to a kinematic range of $2.0<\eta<4.8$ in pseudorapidity, momenta down to $2\;$GeV/$c$ and transverse momenta down to $0.2\;$GeV/$c$. The measurements are performed using minimum-bias events with at least one charged particle in the kinematic acceptance. The results are presented as functions of pseudorapidity and transverse momentum and are compared to predictions from several Monte Carlo event generators.

5 data tables

Charged particle density as function of pseudorapidity for events with at least one prompt final state charged particle in fiducial range. The first quoted uncertainty is statistical and the second systematic.

Charged particle density as function of transverse momentum for events with at least one prompt final state charged particle in fiducial range. The first quoted uncertainty is statistical and the second systematic.

Observed charged particle multiplicity distribution in the full kinematic range of the analysis. The first quoted uncertainty is statistical and the second systematic.

More…

Measurement of charged particle multiplicities in $pp$ collisions at ${\sqrt{s} =7}$TeV in the forward region

The LHCb collaboration Aaij, R. ; Abellan Beteta, C. ; Adeva, B. ; et al.
Eur.Phys.J.C 72 (2012) 1947, 2012.
Inspire Record 1082369 DOI 10.17182/hepdata.65435

The charged particle production in proton-proton collisions is studied with the LHCb detector at a centre-of-mass energy of ${\sqrt{s} =7}$TeV in different intervals of pseudorapidity $\eta$. The charged particles are reconstructed close to the interaction region in the vertex detector, which provides high reconstruction efficiency in the $\eta$ ranges $-2.5&lt;\eta&lt;-2.0$ and $2.0&lt;\eta&lt;4.5$. The data were taken with a minimum bias trigger, only requiring one or more reconstructed tracks in the vertex detector. By selecting an event sample with at least one track with a transverse momentum greater than 1 GeV/c a hard QCD subsample is investigated. Several event generators are compared with the data; none are able to describe fully the multiplicity distributions or the charged particle density distribution as a function of $\eta$. In general, the models underestimate the charged particle production.

8 data tables

Charged particle multiplicity distribution in minimum bias events for different pseudorapidity bins. The first quoted uncertainty is statistical and the second is systematic.

Charged particle multiplicity distribution in hard QCD events for different pseudorapidity bins. The first quoted uncertainty is statistical and the second is systematic.

Charged particle multiplicity distribution for minimum bias events in the full pseudorapidity range. The first quoted uncertainty is statistical and the second is systematic.

More…

Transverse-energy distributions at midrapidity in $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$--200~GeV and implications for particle-production models

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 89 (2014) 044905, 2014.
Inspire Record 1273625 DOI 10.17182/hepdata.63512

Measurements of the midrapidity transverse energy distribution, $d\Et/d\eta$, are presented for $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV and additionally for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 130 GeV. The $d\Et/d\eta$ distributions are first compared with the number of nucleon participants $N_{\rm part}$, number of binary collisions $N_{\rm coll}$, and number of constituent-quark participants $N_{qp}$ calculated from a Glauber model based on the nuclear geometry. For Au$+$Au, $\mean{d\Et/d\eta}/N_{\rm part}$ increases with $N_{\rm part}$, while $\mean{d\Et/d\eta}/N_{qp}$ is approximately constant for all three energies. This indicates that the two component ansatz, $dE_{T}/d\eta \propto (1-x) N_{\rm part}/2 + x N_{\rm coll}$, which has been used to represent $E_T$ distributions, is simply a proxy for $N_{qp}$, and that the $N_{\rm coll}$ term does not represent a hard-scattering component in $E_T$ distributions. The $dE_{T}/d\eta$ distributions of Au$+$Au and $d$$+$Au are then calculated from the measured $p$$+$$p$ $E_T$ distribution using two models that both reproduce the Au$+$Au data. However, while the number-of-constituent-quark-participant model agrees well with the $d$$+$Au data, the additive-quark model does not.

43 data tables

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

More…

Particle multiplicity of unbiased gluon jets from e+ e- three jet events

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 23 (2002) 597-613, 2002.
Inspire Record 565517 DOI 10.17182/hepdata.49742

The charged particle multiplicities of two- and three-jet events from the reaction e+e- -> Z0 -> hadrons are measured for Z0 decays to light quark (uds) flavors. Using recent theoretical expressions to account for biases from event selection, results corresponding to unbiased gluon jets are extracted over a range of jet energies from about 11 to 30 GeV. We find consistency between these results and direct measurements of unbiased gluon jet multiplicity from upsilon and Z0 decays. The unbiased gluon jet data including the direct measurements are compared to corresponding results for quark jets. We perform fits based on analytic expressions for particle multiplicity in jets to determine the ratio r = Ng/Nq of multiplicities between gluon and quark jets as a function of energy. We also determine the ratio of slopes, r(1) = (dNg/dy)/(dNq/dy), and of curvatures, r(2) = (d2Ng/dy2)/(d2Nq/dy2), where y specifies the energy scale. At 30 GeV, we find r = 1.422 +/- 0.051, r(1) = 1.761 +/- 0.071 and r(2) = 1.98 +/- 0.13, where the uncertainties are the statistical and systematic terms added in quadrature. These results are in general agreement with theoretical predictions. In addition, we use the measurements of the energy dependence of Ng and Nq to determine an effective value of the ratio of QCD color factors, CA/CF. Our result, CA/CF = 2.23 +/- 0.14 (total), is consistent with the QCD value of 2.25.

4 data tables

Measurements of the mean charged particle multiplicity of biased two-jet uds flavour events from Z0 decays as a function of the transverse momentum cutoff PT(C=LU) used to separate two- and three-jet events.

Measurements of the mean charged particle multiplicity of three-jet uds flavour 'Y events' from Z0 decays, as a function of the angle THETA1 between the lowest two energy jets. The results for the quark jet scale SQRT(S(C=QQBAR)) and the gluon jet scales PT(C=LU) and PT(C=LE) are also given.

Measurements of the unbiased gluon multiplicity as a function of the energy scale Q=PT(C=LU). The corresponding bins of THETA1 in 'Y events' are also indicated.

More…

Charged multiplicities in Z decays into u, d, and s quarks.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 19 (2001) 257-268, 2001.
Inspire Record 536266 DOI 10.17182/hepdata.49812

About 4.4 million hadronic decays of Z bosons, recorded by the OPAL detector at LEP at a centre-of-mass energy of around sqrt(s) = 91.2 GeV, are used to determine the mean charged particle multiplicities for the three light quark flavours. Events from primary u, d, and s quarks are tagged by selecting characteristic particles which carry a large fraction of the beam energy. The charged particle multiplicities are measured in the hemispheres opposite to these particles. An unfolding procedure is applied to obtain these multiplicities for each primary light quark flavour. This yields <n_u> = 17.77 +- 0.51 +0.86 -1.20, <n_d> = 21.44 +- 0.63 +1.46 -1.17, <n_s> = 20.02 +- 0.13 +0.39 -0.37, where statistical and systematic errors are given. The results for <n_u> and <n_d> are almost fully statistically anti-correlated. Within the errors the result is consistent with the flavour independence of the strong interaction for the particle multiplicities in events from the light up, down, and strange quarks.

2 data tables

No description provided.

No description provided.


Study of the Reaction $\bar{p} p \to p X$ at 22.4-{GeV}/$c$

The Alma Ata-Dubna-Helsinki-Kosice-Moscow-Prague-Tbilisi collaboration Batyunya, B.V. ; Boguslavsky, I.V. ; Dashian, N.B. ; et al.
Sov.J.Nucl.Phys. 33 (1981) 64-66, 1981.
Inspire Record 154173 DOI 10.17182/hepdata.69635

None

49 data tables

No description provided.

No description provided.

No description provided.

More…

$\Lambda$ Production in $e^+ e^-$ Annihilations at 29-{GeV}: A Comparison With Lund Model Predictions

Baringer, Philip S. ; Abachi, S. ; Beltrami, I. ; et al.
Phys.Rev.Lett. 56 (1986) 1346, 1986.
Inspire Record 17781 DOI 10.17182/hepdata.20257

This paper presents measurements of the inclusive production cross sections of Λ baryons in e+e− annihilations at s=29 GeV. The data sample corresponds to an integrated luminosity of 256 pb−1 collected with the High-Resolution Spectrometer at the SLAC storage ring PEP. Comparisons are made to the predictions of the Lund model. The data are well described with use of a strange-diquark suppression parameter, (usud)(sd), of 0.89 ± 0.10−0.16+0.56, and the measured Λc→Λ+X branching ratio of (23 ± 10)%.

3 data tables

No description provided.

Rapidity relative to thrust axis.

Corrected for unobserved moment regions.


Charged Multiplicity of Hadronic Events Containing Heavy Quark Jets

Rowson, P.C. ; Trilling, G. ; Abrams, G.S. ; et al.
Phys.Rev.Lett. 54 (1985) 2580-2583, 1985.
Inspire Record 212819 DOI 10.17182/hepdata.20380

The charged-particle multiplicities of hadronic events deriving from produced bottom or charm quarks have been measured in the Mark II detector at PEP in e+e− annihilation at 29GeV. For events containing one semileptonic and one hadronic weak decay, we find multiplicities of 15.2±0.5±0.7 for bottom and 13.0±0.5±0.8 for charm. The corresponding multiplicities of charged particles accompanying the pair of heavy hadrons are 5.2±0.5±0.9 for bottom, and 8.1±0.5±0.9 for charm.

7 data tables
More…

CHARGED PARTICLE MULTIPLICITIES IN PI-, K- AND ANTI-P INTERACTIONS WITH NUCLEI AT 40-GEV/C

The RISK collaboration Boos, E.G. ; Mosienko, A.M. ; Pokrovsky, N.A. ; et al.
Z.Phys.C 26 (1984) 43-52, 1984.
Inspire Record 214970 DOI 10.17182/hepdata.22350

Interactions of 40 GeV/c πp-,K− and\(\bar p\) on Li, C, S, Cu, CsI and Pb were studied with the RISK-streamer chamber spectrometer. We present multiplicities of negatively charged particles, as well as of protons, and the correlations between them. The normalized mean multiplicity of negative particles,R−, depends on\(\bar v\), the average number of inelastic collisions as\(R^ -= (0.73 \pm 0.04) + (0.34 \pm 0.02)\bar v\). The dependence of the normalized dispersion of negative particles,D−/<N−>, on the number of protons favours independent collision models and contradicts the coherent tube picture. The excess of fast positive particles behaves asA0.4 and shows, for the heavier nuclei, a clear correlation with identified protons.

2 data tables

AVERAGE MULTIPLICITIES OF ALL CHARGED PARTICLES.

AVERAGE MULTIPLICITIES OF ALL NEGATIVELY CHARGED PARTICLES.


Hadron Transverse Momentum Distributions in Muon Deep Inelastic Scattering at 160 GeV/$c$

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Eur.Phys.J.C 73 (2013) 2531, 2013.
Inspire Record 1236358 DOI 10.17182/hepdata.61432

Multiplicities of charged hadrons produced in deep inelastic muon scattering off a $^6$LiD target have been measured as a function of the DIS variables $x_{Bj}$, $Q^2$, $W^2$ and the final state hadron variables $p_T$ and $z$. The $p_T^2$ distributions are fitted with a single exponential function at low values of $p_T^2$ to determine the dependence of $\langle p_T^2 \rangle$ on $x_{Bj}$, $Q^2$, $W^2$ and $z$. The $z$-dependence of $\langle p_T^2 \rangle$ is shown to be a potential tool to extract the average intrinsic transverse momentum squared of partons, $\langle k_{\perp}^2 \rangle$, as a function of $x_{Bj}$ and $Q^2$ in a leading order QCD parton model.

48 data tables

PT dependences of the differential multiplicities for 0.0045 < x_Bjorken < 0.0060 and 1.00 < Q^2 < 1.25 GeV^2 for Positive hadrons.

PT dependences of the differential multiplicities for 0.0060 < x_Bjorken < 0.0080 and 1.00 < Q^2 < 1.30 GeV^2 for Positive hadrons.

PT dependences of the differential multiplicities for 0.0060 < x_Bjorken < 0.0080 and 1.30 < Q^2 < 1.70 GeV^2 for Positive hadrons.

More…