Bose-Fermi U(6/2J+1) Supersymmetries And High-Spin Anomalies

Morrison, I. ; Jarvis, Peter D. ;
Nucl.Phys.A 435 (1985) 461-476, 1985.
Inspire Record 212932 DOI 10.17182/hepdata.17659

A supersymmetric extension of the interacting boson model (IBM) is constructed to describe high-spin anomalies in both even- and odd-mass spectra of the Hg, Pt region (190 ⩽ A ⩽ 200). Supergroup chains such as U ( 6 2j + 1 ) ⊃ Osp ( 6 2j + 1 ) ⊃ O (6) × Sp ( 6 2j + 1 )… U ( 6 2j + 1 ) ⊃ U ( 5 2j + 1 ) ⊃ Osp ( 5 2j + 1 )… incorporate a single j -shell fermion in addition to the usual “s” and “d” bosons ( L = 0 and L = 2). The orthosympletic supergroup reflects the strong pairing force in the subspace of the fermion intruder level. The model agrees favourably with experiment and microscopic calculation.

1 data table

No description provided.


Muon-Deuterium Deep Inelastic Scattering

Kim, I.J. ; Entenberg, A. ; Jostlein, H. ; et al.
Phys.Rev.Lett. 33 (1974) 551, 1974.
Inspire Record 1427 DOI 10.17182/hepdata.21238

We have measured deep inelastic muon-deuteron scattering in the range 0.4<Q2<3.4 and 1.6<ν<5.6 GeV. We have extracted the neutron structure function and find that νW2n differs significantly from νW2p, as also found in e−d scattering. To compare μ−d and e−d scattering we form the ratio r(Q2)=(νW2)μd(νW2)ed=N(1+Q2Λ2)−2 and find N=0.925±0.038 and 1Λ2=−0.019±0.016.

1 data table

No description provided.


Elastic electron scattering from c-12 and o-16

Sick, I. ; Mccarthy, J.S. ;
Nucl.Phys.A 150 (1970) 631-654, 1970.
Inspire Record 62489 DOI 10.17182/hepdata.37092

Electron scattering cross sections for carbon and oxygen between q = 1 fm −1 and 4 fm −1 are given. The data are analysed in terms of a phenomenological charge distribution and new information concerning the tail and the center of the charge distribution are obtained. The presence of dispersion effects appears to be necessary to explain the cross sections in the first diffraction minimum. The effect of a finite potential and short range correlations on the form factor are discussed.

4 data tables

X ERROR D(TARGET) = 99.99 PCT. X ERROR D(THETA) = 0.9300 DEG.

X ERROR D(TARGET) = 99.99 PCT. X ERROR D(THETA) = 0.9300 DEG.

X ERROR D(THETA) = 0.9300 DEG.

More…

Measurement of polarization observables $\textbf{T}$, ${\textbf{P}}$, and ${\textbf{H}}$ in $\mathbf {\pi ^0}$ and $\mathbf {\eta }$ photoproduction off quasi-free nucleons

The CBELSA/TAPS collaboration Jermann, N. ; Krusche, B. ; Metag, V. ; et al.
Eur.Phys.J.A 59 (2023) 232, 2023.
Inspire Record 2712592 DOI 10.17182/hepdata.145075

The target asymmetry T, recoil asymmetry P, and beam-target double polarization observable H were determined in exclusive $\pi ^0$ and $\eta $ photoproduction off quasi-free protons and, for the first time, off quasi-free neutrons. The experiment was performed at the electron stretcher accelerator ELSA in Bonn, Germany, with the Crystal Barrel/TAPS detector setup, using a linearly polarized photon beam and a transversely polarized deuterated butanol target. Effects from the Fermi motion of the nucleons within deuterium were removed by a full kinematic reconstruction of the final state invariant mass. A comparison of the data obtained on the proton and on the neutron provides new insight into the isospin structure of the electromagnetic excitation of the nucleon. Earlier measurements of polarization observables in the $\gamma p \rightarrow \pi ^0 p$ and $\gamma p \rightarrow \eta p$ reactions are confirmed. The data obtained on the neutron are of particular relevance for clarifying the origin of the narrow structure in the $\eta n$ system at $W = 1.68\ \textrm{GeV}$. A comparison with recent partial wave analyses favors the interpretation of this structure as arising from interference of the $S_{11}(1535)$ and $S_{11}(1650)$ resonances within the $S_{11}$-partial wave.

4 data tables

Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma p \to \pi^0 p$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.

Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma n \to \pi^0 n$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.

Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma p \to \eta p$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.

More…