Showing 6 of 6 results
We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% {\lambda}int thick stationary aluminium target, of proton and pion beams with momentum from \pm3 GeV/c to \pm15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on aluminium nuclei are compared with cross-sections on beryllium, carbon, copper, tin, tantalum and lead nuclei.
Ratio of deuterons to protons for polar angle 20-30 deg.
Ratio of deuterons to protons for polar angle 30-45 deg.
Ratio of deuterons to protons for polar angle 45-65 deg.
Ratio of deuterons to protons for polar angle 65-90 deg.
Ratio of deuterons to protons for polar angle 90-125 deg.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
Measurements of the double-differential proton production cross-section in the range of momentum 0.5 GeV/c < p < 8.0 GeV/c and angle 0.05 rad < \theta < 0.25 rad in collisions of charged pions and protons on beryllium, carbon, aluminium, copper, tin, tantalum and lead are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN Proton Synchrotron. Incident particles were identified by an elaborate system of beam detectors and impinged on a target of 5 % of a nuclear interaction length. The tracking and identification of the produced particles was performed using the forward spectrometer of the HARP experiment. Results are obtained for the double-differential cross-sections mainly at four incident beam momenta (3 GeV/c, 5 GeV/c, 8 GeV/c and 12 GeV/c). Measurements are compared with predictions of the GEANT4 and MARS Monte Carlo generators.
Differential cross section for proton production with a negative pion beam and Beryllium target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Beryllium target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Beryllium target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Beryllium target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Beryllium target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Beryllium target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Beryllium target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Beryllium target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Beryllium target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Beryllium target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Beryllium target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Beryllium target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Carbon target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Carbon target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Carbon target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Carbon target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Carbon target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Carbon target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Carbon target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Carbon target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Carbon target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Carbon target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Carbon target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Carbon target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Aluminium target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Aluminium target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Aluminium target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Aluminium target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Aluminium target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Aluminium target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Aluminium target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Aluminium target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Aluminium target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Aluminium target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Aluminium target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Aluminium target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Copper target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Copper target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Copper target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Copper target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Copper target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Copper target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Copper target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Copper target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Copper target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Copper target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Copper target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Copper target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Tin target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Tin target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Tin target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Tin target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Tin target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Tin target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Tin target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Tin target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Tin target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Tin target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Tin target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Tin target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Tantallum target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Tantallum target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Tantallum target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Tantallum target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Tantallum target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Tantallum target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Tantallum target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Tantallum target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Tantallum target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Tantallum target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Tantallum target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Tantallum target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Lead target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Lead target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Lead target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Lead target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Lead target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Lead target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Lead target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Lead target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Lead target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Lead target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Lead target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Lead target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
We have measured the inclusive cross-section as a function of missing energy, due to the production of neutrinos or new weakly interacting neutral particles in 450 GeV/c proton-nucleus collisions, using calorimetric measurements of visible event energy. Upper limits are placed on the production of new particles as a function of their energy. These upper limits are typically an order
Differential single diffraction cross section.
Differential single diffraction cross section.
Differential single diffraction cross section.
Slope of experimental fit to differential diffraction cross sections.
Differential single diffraction cross section.
Differential single diffraction cross section.
Differential single diffraction cross section.
Single diffraction cross section parametrized as SIG*MASS**POWER.
Mass dependence of the single diffraction cross section.
Highly inelastic processes in hadron-nucleus reactions at several GeV have been studied by measuring multi-particle emission in the target-rapidity region. Events with no leading particle(s) but with high multiplicities were observed up to 4 GeV. Proton spectra from such events were well reproduced with a single-moving-source model, which implied possible formation of a local source. The number of nucleons involved in the source was estimated to be (3–5)A 1 3 from the source velocity and the multiplicity of emitted protons. In those processes the incident energy flux seemed to be deposited totally or mostly (>62;75%) in the target nucleus to form the local source. The cross sections for the process were about 30% of the geometrical cross sections, with little dependence on incident energies up to 4 GeV and no dependence on projectiles (pions or protons). The E 0 parameter in the invariant-cross-section formula E d 3 σ /d p 3 = A exp (− E / E 0 ) for protons from the source increases with incident energy from 1 to 4 GeV/ c , but seems to saturate above 10 GeV at a value E 0 = 60–70 MeV. Three components in the emitted nucleon spectra were observed which would correspond to three stages of the reaction process: primary, pre-equilibrium and equilibrium.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
The emission of protons from targets of Li6, Li, C12, Al27, Ca40, V51, Zr90, and Pb under bombardment from 800 MeV protons has been studied using a high resolution proton spectrometer. Spectra were measured at laboratory scattering angles of 5°, 7°, 9°, 11°, 13°, 15°, 20°, 25°, and 30° with special emphasis on the quasifree region. Outgoing momenta corresponding to the region of pion production were examined at 11° and 15°. Absolute cross sections have been derived by reference to known (p,p) scattering data at 800 MeV. The quasifree scattering has been compared to a distorted-wave impulse approximation analysis by summing over the unobserved (struck) nucleon. The systematics of proton production and the applicability of the distorted-wave impulse approximation analyses are discussed. NUCLEAR REACTIONS (p,p′) on Li6, Li, C12, Al27, Ca40, V51, Zr90, Pb; Ep=800 MeV, θL=5° to 30°; quasielastic scattering, DWIA analysis.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.5%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.5%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.2%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-5.9%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.2%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-5.9%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-5.9%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.2%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.5%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.5%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.2%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-5.9%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.2%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-5.9%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-5.9%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.2%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.5%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.5%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.2%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-5.9%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.2%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-5.9%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-5.9%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.2%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.6%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.6%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.2%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-6.2%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-5.8%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-5.5%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-5.8%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-5.5%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-5.5%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-5.8%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-4.8%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-4.8%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-4.3%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-3.9%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-4.3%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-3.9%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-3.9%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-4.3%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-5.4%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-5.4%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-5.0%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-4.6%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-5.0%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-4.6%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-4.6%.
APPROXIMATE SYSTEMATIC CROSS SECTION ERROR IS EQUAL TO +-5.0%.
The measurement of invariant cross sections for the production of protons by 400 GeV protons from a variety of nuclear targets is described. Results are given for Li6, Be, C, A1, Cu, and Ta at 70°, 90°, 118°, 137° and 160° for detected protons from 0.4 to 1.4 GeV/c. Some angular distributions are given over a wider selection of angles. Comparisons are made with observed experimental results at other energies. NUCLEAR REACTIONS Inclusive cross section, 400 GeV, Li6, Be, C, A1, Cu, and Ta.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.