The differential cross sections for inclusive production of B+ hadrons are measured as a function of the B+ transverse momentum pT[B] and rapidity y[B] in pp collisions at a centre-of-mass energy of 13 TeV, using data collected by the CMS experiment that correspond to an integrated luminosity of 49.4 inverse picobarns. The measurement uses the exclusive decay channel B+ to J/psi K+, with J/psi mesons that decay to a pair of muons. The results show a reasonable agreement with theoretical calculations within the uncertainties.
B+ differential production cross sections DSIG/DPT for |yB|< 1.45 or |yB|< 2.1, at 13 TeV. The calculations from FONLL and PYTHIA are provided. The ratio of the data at 13 TeV to the FONLL predictions and the ratios of the PYTHIA to the FONLL calculations are also given.
B+ differential production cross sections DSIG/DETARAP for 10 < ptB < 100 GeV or 17 < ptB < 100 GeV, at 13 TeV. The calculations from FONLL and PYTHIA are provided. The ratio of the data at 13 TeV to the FONLL predictions and the ratios of the PYTHIA to the FONLL calculations are also given.
Ratios of B+ differential production cross sections at 13 TeV and at 7 TeV as a function of ptB for |yB|< 1.45 or |yB|< 2.1. The calculations from FONLL and PYTHIA are provided as well.
The production of Z bosons in pPb collisions at sqrt(s[NN]) = 5.02 TeV is studied by the CMS experiment via the electron and muon decay channels. The inclusive cross section is compared to pp collision predictions, and found to scale with the number of elementary nucleon-nucleon collisions. The differential cross sections as a function of the Z boson rapidity and transverse momentum are measured. Though they are found to be consistent within uncertainty with theoretical predictions both with and without nuclear effects, the forward-backward asymmetry suggests the presence of nuclear effects at large rapidities. These results provide new data for constraining nuclear parton distribution functions.
Differential cross section of the Z bosons in pPb collisions as a function of rapidity in the fiducial region for the combined leptonic decay channel.
Forward-backward asymmetry (AFB) distribution of the Z bosons in pPb collisions as a function of rapidity in the fiducial region for the combined leptonic decay channel.
Differential cross section of the Z bosons in pPb collisions as a function of transverse momentum in the fiducial region for the combined leptonic decay channel.
A first measurement of the top quark spin asymmetry, sensitive to the top quark polarisation, in t-channel single top quark production is presented. It is based on a sample of pp collisions at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 inverse-femtobarns. A high-purity sample of t-channel single top quark events with an isolated muon is selected. Signal and background components are estimated using a fit to data. A differential cross section measurement, corrected for detector effects, of an angular observable sensitive to the top quark polarisation is performed. The differential distribution is used to extract a top quark spin asymmetry of 0.26 +/- 0.03 (stat) +/- 0.10 (syst), which is compatible with a p-value of 4.6% with the standard model prediction of 0.44.
The normalized differential cross section as a function of unfolded $\cos\theta_{\mu}^{*}$ for top quark.
The normalized differential cross section as a function of unfolded $\cos\theta_{\mu}^{*}$ for top antiquark.
The normalized differential cross section as a function of unfolded $\cos\theta_{\mu}^{*}$ for top quark and antiquark.
We present a measurement of b jet transverse momentum (pt) spectra in proton-lead (pPb) collisions using a dataset corresponding to about 35 inverse nanobarns collected with the CMS detector at the LHC. Jets from b quark fragmentation are found by exploiting the long lifetime of hadrons containing a b quark through tagging methods using distributions of the secondary vertex mass and displacement. Extracted cross sections for b jets are scaled by the effective number of nucleon-nucleon collisions and are compared to a reference obtained from PYTHIA simulations of pp collisions. The PYTHIA-based estimate of the nuclear modification factor is found to be 1.22 +/- 0.15 (stat + syst pPb) +/- 0.27 (syst PYTHIA) averaged over all jets with pt between 55 and 400 GeV/c and with abs(eta[lab]) < 2. We also compare this result to predictions from models using perturbative calculations in quantum chromodynamics.
Distributions of the JP tagger discriminator before applying the SSV tagger selection.
Distributions of the JP tagger discriminator after applying the SSV tagger selection.
Distributions of the b-tagging efficiency as a function of the mistag rate of light jets for pp collisions in a PYTHIA simulation.
Jet multiplicity distributions in top quark pair (t t-bar) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7 inverse femtobarns. The measurement is performed in the dilepton decay channels (e+ e-, mu+ mu-, and e+/- mu-/+). The absolute and normalized differential cross sections for t t-bar production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential t t-bar b and t t-bar b b-bar cross sections are presented for the first time as a function of the kinematic properties of the leading additional b jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. The data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading order calculation.
Absolute differential ttbar cross sections as a function of the jet multiplicity for jets with pt > 30GeV, along with their statistical and systematic uncertainties. The results are presented at the particle level in the visible phase space of the ttbar decay products and the additional jets.
Normalized differential ttbar cross sections as a function of the jet multiplicity for jets with pt > 30GeV, along with their statistical and systematic uncertainties. The results are presented at the particle level in the visible phase space of the ttbar decay products and the additional jets.
Absolute differential ttbar cross sections as a function of the jet multiplicity for jets with pt > 60GeV, along with their statistical and systematic uncertainties. The results are presented at the particle level in the visible phase space of the ttbar decay products and the additional jets.
The π+—photoproduction cross section is found to have a peak in the forward direction in disagreement with simple Regge pole models.
No description provided.
We have measured the cross section at 180° for K + p and K + n elastic scattering in the momentum range 1.0 to 1.5 GeV/ c . The K + n cross section was measured on deuterium and the K + p on hydrogen and deuterium. We were thus able to measure directly the difference between free nucleon (proton) scattering and bound nucleon (proton) scattering at large angles. This difference was found to be small and within our experimental accuracy the K + p(n) cross section should be equal to the K + p (free) cross section at 180°. We found no evidence for an s -channel resonance Z ∗ in either the K + p or K + n system. A comparison of our data and those of other groups with theoretical predictions is given.
DEUTERIUM TARGET. U IS ABOUT 0.1 GEV**2.
HYDROGEN AND DEUTERIUM TARGET DATA ARE IN GOOD AGREEMENT. THESE CROSS SECTIONS ARE A WEIGHTED AVERAGE.
We report a measurement of the differential cross section of $\pi^0$ pair production in single-tag two-photon collisions, $\gamma^* \gamma \to \pi^0 \pi^0$, in $e^+ e^-$ scattering. The cross section is measured for $Q^2$ up to 30 GeV$^2$, where $Q^2$ is the negative of the invariant mass squared of the tagged photon, in the kinematic range 0.5 GeV < W < 2.1 GeV and $|\cos \theta^*|$ < 1.0 for the total energy and pion scattering angle, respectively, in the $\gamma^* \gamma$ center-of-mass system. The results are based on a data sample of 759 fb$^{-1}$ collected with the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ collider. The transition form factor of the $f_0(980)$ and that of the $f_2(1270)$ with the helicity-0, -1, and -2 components separately are measured for the first time and are compared with theoretical calculations.
$W$ dependence of the differential cross section ${\rm d}\sigma/{\rm d}|\cos\theta^*|$ in five $|\cos\theta^*|$ bins for $Q^2$=3.45 GeV$^2$.
$W$ dependence of the differential cross section ${\rm d}\sigma/{\rm d}|\cos\theta^*|$ in five $|\cos\theta^*|$ bins for $Q^2$=4.46 GeV$^2$.
$W$ dependence of the differential cross section ${\rm d}\sigma/{\rm d}|\cos\theta^*|$ in five $|\cos\theta^*|$ bins for $Q^2$=5.47 GeV$^2$.
The production cross sections of the B+, B0, and B0s mesons, and of their charge conjugates, are measured via exclusive hadronic decays in pPb collisions at the center-of-mass energy sqrt(s_NN) = 5.02 TeV with the CMS detector at the CERN LHC. The data set used for this analysis corresponds to an integrated luminosity of 34.6 inverse nanobarns. The production cross sections are measured in the transverse momentum range between 10 and 60 GeV/c. No significant modification is observed compared to proton-proton perturbative QCD calculations scaled by the number of incoherent nucleon-nucleon collisions. These results provide a baseline for the study of in-medium b quark energy loss in PbPb collisions.
The measured $p_{\rm{T}}$-differential production cross section of $B^{+}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.
The measured $p_{\rm{T}}$-differential production cross section of $B^{0}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.
The measured $p_{\rm{T}}$-differential production cross section of $B_{s}^{0}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.
About 100 000 pictures, with an average of ∼12K + per picture, taken in the 81 cm Saclay deuterium bubble chamber exposed to a separated 3 GeV/c K + beam have been analysed for the reaction K + d→K 0 pp in the 1-prong V 0 and 2-prong V 0 topologies. 214 such events have been found allowing a determination of the differential cross-section. A comparison with the prediction of Rarita and Schwarzschild yields reasonable agreement; in particular a large real part is inferred for the amplitude for the reaction K + n→K 0 p.
The errors are statistical only.
The errors are statistical only. To evaluate the cross section on neutron thE data are divided on (1-FORMFACTOR(C=DEUT). For definition of the formfactor see L. Durand, Phys. Rev. 115 (1959) 1020.