The first observation of the $\mathrm{t\bar{t}}$H process in a single Higgs boson decay channel with the full reconstruction of the final state (H$\to\gamma\gamma$) is presented, with a significance of 6.6 standard deviations ($\sigma$). The CP structure of Higgs boson couplings to fermions is measured, resulting in an exclusion of the pure CP-odd structure of the top Yukawa coupling at 3.2$\sigma$. The measurements are based on a sample of proton-proton collisions at a center-of-mass energy $\sqrt{s} =$ 13 TeV collected by the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The cross section times branching fraction of the $\mathrm{t\bar{t}}$H process is measured to be $\sigma_{\mathrm{t\bar{t}H}}\mathcal{B}_{\gamma\gamma} =$ 1.56 $^{+0.34}_{-0.32}$ fb, which is compatible with the standard model prediction of 1.13 $^{+0.08}_{-0.11}$ fb. The fractional contribution of the CP-odd component is measured to be $f^{\mathrm{Htt}}_\mathrm{CP} =$ 0.00 $\pm$ 0.33.
measured cross section times branch ratio
measured cross section times branch divided by SM prediction
Observed significance
Central exclusive and semiexclusive production of $\pi^+\pi^-$ pairs is measured with the CMS detector in proton-proton collisions at the LHC at center-of-mass energies of 5.02 and 13 TeV. The theoretical description of these nonperturbative processes, which have not yet been measured in detail at the LHC, poses a significant challenge to models. The two pions are measured and identified in the CMS silicon tracker based on specific energy loss, whereas the absence of other particles is ensured by calorimeter information. The total and differential cross sections of exclusive and semiexclusive central $\pi^+\pi^-$ production are measured as functions of invariant mass, transverse momentum, and rapidity of the $\pi^+\pi^-$ system in the fiducial region defined as transverse momentum $p_\mathrm{T}(\pi)$ $>$ 0.2 GeV and pseudorapidity $|\eta(\pi)|$ $<$ 2.4. The production cross sections for the four resonant channels f$_0(500)$, $\rho^0(770)$, f$_0(980)$, and f$_2(1270)$ are extracted using a simple model. These results represent the first measurement of this process at the LHC collision energies of 5.02 and 13 TeV.
Differential cross section as a function of the invariant mass of the pion pair at 5.02 TeV, compared with generator-level simulations.
Differential cross section as a function of the invariant mass of the pion pair at 13 TeV, compared with generator-level simulations.
Differential cross section as a function of the transverse momentum of the pion pair at 5.02 TeV, compared with generator-level simulations.
Measurements are presented of the single-diffractive dijet cross section and the diffractive cross section as a function of the proton fractional momentum loss $\xi$ and the four-momentum transfer squared $t$. Both processes pp$\to$pX and pp$\to$Xp, ie with the proton scattering to either side of the interaction point, are measured, where X includes at least two jets; the results of the two processes are averaged. The analyses are based on data collected simultaneously with the CMS and TOTEM detectors at the LHC in proton-proton collisions at $\sqrt{s}$= 8 TeV during a dedicated run with $\beta^{\ast} =$ 90 m at low instantaneous luminosity and correspond to an integrated luminosity of 37.5 nb$^{-1}$. The single-diffractive dijet cross section $\sigma^\mathrm{pX}_{\mathrm{jj}}$, in the kinematic region $\xi \lt$ 0.1, 0.03 $\lt |$t$| \lt 1$ GeV$^2$, with at least two jets with transverse momentum $p_\mathrm{T} >$ 40 GeV, and pseudorapidity $|\eta| \lt$ 4.4, is 21.7$\pm$0.9 (stat)$^{+3.0}_{-3.3}$ (syst) $\pm$ 0.9 (lum) nb. The ratio of the single-diffractive to inclusive dijet yields, normalised per unit of $\xi$, is presented as a function of $x$, the longitudinal momentum fraction of the proton carried by the struck parton. The ratio in the kinematic region defined above, for $x$ values in the range $-$2.9 $\leq \log_{10} x \leq$$-$1.6, is $R = (\sigma^\mathrm{pX}_{\mathrm{jj}}/\Delta\xi)/\sigma_{\mathrm{jj}} =$ 0.025$\pm$0.001 (stat) $\pm$ 0.003 (syst), where $\sigma^\mathrm{pX}_{\mathrm{jj}}$ and $\sigma_{\mathrm{jj}}$ are the single-diffractive and inclusive dijet cross sections, respectively. The results are compared with predictions from models of diffractive and nondiffractive interactions. Monte Carlo predictions based on the HERA diffractive parton distribution functions agree well with the data when corrected for the effect of soft rescattering between the spectator partons.
Differential cross section as a function of $t$ for single-diffractive dijet production, in the kinematic region $\xi < 0.1$, $0.03 < \lvert t \rvert < 1\,\mathrm{GeV}^2$, with at least two jets with transverse momentum $p_{\mathrm{T}} > 40\,\mathrm{GeV}$, and pseudorapidity $\lvert \eta \rvert < 4.4$.
Differential cross section as a function of $\xi$ for single-diffractive dijet production, in the kinematic region $\xi < 0.1$, $0.03 < \lvert t \rvert < 1\,\mathrm{GeV}^2$, with at least two jets with transverse momentum $p_{\mathrm{T}} > 40\,\mathrm{GeV}$, and pseudorapidity $\lvert \eta \rvert < 4.4$.
Ratio per unit of $\xi$ of the single-diffractive and inclusive dijet cross sections in the region given by $\xi < 0.1$ and $0.03 < \lvert t \rvert < 1\,\mathrm{GeV}^2$, with at least two jets with transverse momentum $p_{\mathrm{T}} > 40\,\mathrm{GeV}$, and pseudorapidity $\lvert \eta \rvert < 4.4$.
A measurement is presented of the cross section for electroweak production of a Z boson and a photon in association with two jets (Z$\gamma$jj) in proton-proton collisions. The Z boson candidates are selected through their decay into a pair of electrons or muons. The process of interest, electroweak Z$\gamma$jj production, is isolated by selecting events with a large dijet mass and a large pseudorapidity gap between the two jets. The measurement is based on data collected at the CMS experiment at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The observed significance of the signal is 3.9 standard deviations, where a significance of 5.2 standard deviations is expected in the standard model. These results are combined with published results by CMS at $\sqrt{s} =$ 8 TeV, which leads to observed and expected respective significances of 4.7 and 5.5 standard deviations. From the 13 TeV data, a value is obtained for the signal strength of electroweak Z$\gamma$jj production and bounds are given on quartic vector boson interactions in the framework of dimension-eight effective field theory operators.
The measured EWK Zgamma+2j fiducial cross section. The uncertainty is the combined stastical uncertianty and the systematic uncertainty including experimental and theortical sources
The measured combined QCD-induced and EWK Zgamma+2j fiducial cross section. The uncertainty is the combined stastical uncertianty and the systematic uncertainty including experimental and theortical sources
aQGC limits on effective field theory parameters in EWK Zgamma events
We present an analysis of proton number fluctuations in $\sqrt{s_{NN}}$ = 2.4 GeV Au+Au collisions measured with the High-Acceptance DiElectron Spectrometer (HADES) at GSI. With the help of extensive detector simulations done with IQMD transport model events including nuclear clusters, various nuisance effects influencing the observed proton cumulants have been investigated. Acceptance and efficiency corrections have been applied as a function of fine grained rapidity and transverse momentum bins, as well as considering local track density dependencies. Next, the effects of volume changes within particular centrality selections have been considered and beyond-leading-order corrections have been applied to the data. The efficiency and volume corrected proton number moments and cumulants Kn of orders n = 1, . . . , 4 have been obtained as a function of centrality and phase-space bin, as well as the corresponding correlators C_n . We find that the observed correlators show a power-law scaling with the mean number of protons, i.e. $C_n \propto
$N_{part}$ distributions in Au+Au collisions for 8 centrality bins obtained from rescaled and modified $N_{hit}$ distributions (solid lines in Fig. 21b)
Efficiency and N2LO volume-corrected proton cumulant ratio $K_2/K_1$ plotted as a function of the rapidity acceptance
Efficiency and N2LO volume-corrected proton cumulant ratio $K_3/K_2$ plotted as a function of the rapidity acceptance
A measurement of the mass of the Higgs boson in the diphoton decay channel is presented. This analysis is based on 35.9 fb$^{-1}$ of proton-proton collision data collected during the 2016 LHC running period, with the CMS detector at a center-of-mass energy of 13 TeV. A refined detector calibration and new analysis techniques have been used to improve the precision of this measurement. The Higgs boson mass is measured to be $m_\mathrm{H} =$ 125.78 $\pm$ 0.26 GeV. This is combined with a measurement of $m_\mathrm{H}$ already performed in the H $\to$ ZZ $\to$ 4$\ell$ decay channel using the same data set, giving $m_\mathrm{H} =$ 125.46 $\pm$ 0.16 GeV. This result, when further combined with an earlier measurement of $m_\mathrm{H}$ using data collected in 2011 and 2012 with the CMS detector, gives a value for the Higgs boson mass of $m_\mathrm{H} =$ 125.38 $\pm$ 0.14 GeV. This is currently the most precise measurement of the mass of the Higgs boson.
A summary of the mass of the Higgs boson measured in the H to GG and the H to ZZ to 4l decay channel, and for the combination of the two. These measurements have been carried out with the Run 1 and 2016 datasets as well as with them combined.
The fiducial cross section for $\Upsilon$(1S) pair production in proton-proton collisions at a center-of-mass energy of 13 TeV in the region where both $\Upsilon$(1S) mesons have an absolute rapidity below 2.0 is measured to be 79 $\pm$ 11 (stat) $\pm$ 6 (syst) $\pm$ 3 ($\mathcal{B}$) pb assuming the mesons are produced unpolarized. The last uncertainty corresponds to the uncertainty in the $\Upsilon$(1S) meson dimuon branching fraction. The measurement is performed in the final state with four muons using proton-proton collision data collected in 2016 by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. This process serves as a standard model reference in a search for narrow resonances decaying to $\Upsilon$(1S)$\mu^+\mu^-$ in the same final state. Such a resonance could indicate the existence of a tetraquark that is a bound state of two b quarks and two $\bar{\mathrm{b}}$ antiquarks. The tetraquark search is performed for masses in the vicinity of four times the bottom quark mass, between 17.5 and 19.5 GeV, while a generic search for other resonances is performed for masses between 16.5 and 27 GeV. No significant excess of events compatible with a narrow resonance is observed in the data. Limits on the production cross section times branching fraction to four muons via an intermediate $\Upsilon$(1S) resonance are set as a function of the resonance mass.
The fiducial cross section measured in bins of the absolute rapidity difference between the mesons for events in the fiducial region with 2 Y(1S) with absolute rapidity less than 2.0.
The fiducial cross section measured in bins of the invariant mass of the two mesons for events in the fiducial region with 2 Y(1S) with absolute rapidity less than 2.0.
The fiducial cross section measured in bins of the transverse momentum of the meson pair for events in the fiducial region with 2 Y(1S) with absolute rapidity less than 2.0.
A data sample of events from proton-proton collisions with at least two jets, and two isolated same-sign or three or more charged leptons, is studied in a search for signatures of new physics phenomena. The data correspond to an integrated luminosity of 137 fb$^{-1}$ at a center-of-mass energy of 13 TeV, collected in 2016-2018 by the CMS experiment at the LHC. The search is performed using a total of 168 signal regions defined using several kinematic variables. The properties of the events are found to be consistent with the expectations from standard model processes. Exclusion limits at 95% confidence level are set on cross sections for the pair production of gluinos or squarks for various decay scenarios in the context of supersymmetric models conserving or violating R parity. The observed lower mass limits are as large as 2.1 TeV for gluinos and 0.9 TeV for top and bottom squarks. To facilitate reinterpretations, model-independent limits are provided in a set of simplified signal regions.
Exclusion regions at 95% CL in the $m_{\tilde{\chi}_1^0}$ versus $m_{\tilde{g}}$ plane for the T1tttt (upper left) and T5ttbbWW (upper right) models, with off-shell third-generation squarks, and the T5tttt (lower left) and T5ttcc (lower right) models, with on-shell third-generation squarks. For the T5ttbbWW model, $m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_1^0} + 5 GeV$, for the T5tttt model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = m_t$, and for the T5ttcc model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = 20 GeV$ and the decay proceeds through $\tilde{t} \to c \tilde{\chi}_1^0$. The right-hand side color scale indicates the excluded cross section values for a given point in the SUSY particle mass plane. The solid black curves represent the observed exclusion limits assuming the approximate-NNLO+NNLL cross sections (thick line), or their variations of $\pm 1$ standard deviations (s.d.) (thin lines). The dashed red curves show the expected limits with the corresponding $\pm 1$ s.d. and $\pm 2$ s.d. uncertainties. Excluded regions are to the left and below the limit curves.
Exclusion regions at 95% CL in the $m_{\tilde{\chi}_1^0}$ versus $m_{\tilde{g}}$ plane for the T1tttt (upper left) and T5ttbbWW (upper right) models, with off-shell third-generation squarks, and the T5tttt (lower left) and T5ttcc (lower right) models, with on-shell third-generation squarks. For the T5ttbbWW model, $m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_1^0} + 5 GeV$, for the T5tttt model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = m_t$, and for the T5ttcc model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = 20 GeV$ and the decay proceeds through $\tilde{t} \to c \tilde{\chi}_1^0$. The right-hand side color scale indicates the excluded cross section values for a given point in the SUSY particle mass plane. The solid black curves represent the observed exclusion limits assuming the approximate-NNLO+NNLL cross sections (thick line), or their variations of $\pm 1$ standard deviations (s.d.) (thin lines). The dashed red curves show the expected limits with the corresponding $\pm 1$ s.d. and $\pm 2$ s.d. uncertainties. Excluded regions are to the left and below the limit curves.
Exclusion regions at 95% CL in the $m_{\tilde{\chi}_1^0}$ versus $m_{\tilde{g}}$ plane for the T1tttt (upper left) and T5ttbbWW (upper right) models, with off-shell third-generation squarks, and the T5tttt (lower left) and T5ttcc (lower right) models, with on-shell third-generation squarks. For the T5ttbbWW model, $m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_1^0} + 5 GeV$, for the T5tttt model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = m_t$, and for the T5ttcc model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = 20 GeV$ and the decay proceeds through $\tilde{t} \to c \tilde{\chi}_1^0$. The right-hand side color scale indicates the excluded cross section values for a given point in the SUSY particle mass plane. The solid black curves represent the observed exclusion limits assuming the approximate-NNLO+NNLL cross sections (thick line), or their variations of $\pm 1$ standard deviations (s.d.) (thin lines). The dashed red curves show the expected limits with the corresponding $\pm 1$ s.d. and $\pm 2$ s.d. uncertainties. Excluded regions are to the left and below the limit curves.
A search for charged Higgs bosons (H$^\pm$) decaying into a top and a bottom quark in the all-jet final states is presented. The analysis uses LHC proton-proton collision data recorded with the CMS detector in 2016 at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. No significant excess is observed above the expected background. Model-independent upper limits at 95% confidence level are set on the product of the H$^\pm$ production cross section and branching fraction in two scenarios. For production in association with a top quark, limits of 21.3 to 0.007 pb are obtained for H$^\pm$ masses in the range of 0.2 to 3 TeV. Combining this with data from a search in leptonic final states results in improved limits of 9.25 to 0.005 pb. The complementary $s$-channel production of an H$^\pm$ is investigated in the mass range of 0.8 to 3 TeV and the corresponding upper limits are 4.5 to 0.023 pb. These results are interpreted using different minimal supersymmetric extensions of the standard model.
The 95% CL upper limit on the production cross section for the Charged Higgs boson decaying into a top-bottom pair.
The 95% CL upper limit on the production cross section for the Charged Higgs boson decaying into a top-bottom pair for s-channel production in the boosted regime.
The 95% CL upper limit on the production cross section for the Charged Higgs boson decaying into a top-bottom pair for the associated production (fully hadronic).
Ratios of cross sections, $\sigma$(Z+c jets)/$\sigma$(Z+jets), $\sigma$(Z+b jets)/$\sigma$(Z+jets), and $\sigma$(Z+c jets)/$\sigma$(Z+b jets) in the associated production of a Z boson with at least one charm or bottom quark jet are measured in proton-proton collisions at $\sqrt{s}=$ 13 TeV. The data sample, collected by the CMS experiment at the CERN LHC, corresponds to an integrated luminosity of 35.9 fb$^{-1}$, with a fiducial volume of $p_\mathrm{T}>$ 30 GeV and $|\eta|<$ 2.4 for the jets, where $p_\mathrm{T}$ and $\eta$ represent transverse momentum and pseudorapidity, respectively. The Z boson candidates come from leptonic decays into electrons or muons with $p_\mathrm{T}>$ 25 GeV and $|\eta|<$ 2.4, and the dilepton mass satisfies 71 $\lt m_\mathrm{Z}\lt$ 111 GeV. The measured values are $\sigma$(Z+c jets)/$\sigma$(Z+jets) = 0.102 $\pm$ 0.002 $\pm$ 0.009, $\sigma$(Z+b jets)/$\sigma$(Z+jets) = 0.0633 $\pm$ 0.0004 $\pm$ 0.0015, and $\sigma$(Z+c jets)/$\sigma$(Z+b jets) = 1.62 $\pm$ 0.03 $\pm$ 0.15. Results on the inclusive and differential cross section ratios as functions of jet and Z boson transverse momentum are compared with predictions from leading and next-to-leading order perturbative quantum chromodynamics calculations. These are the first measurements of the cross section ratios at 13 TeV, and the measurement precision is better than that of the current theoretical predictions.
Unfolded R(c/j) cross section ratio versus jet transverse momentum
Unfolded R(c/j) cross section ratio versus Z boson transverse momentum
Unfolded R(b/j) cross section ratio versus jet transverse momentum