We present a new measurement of the inclusive and differential production cross sections of $J/\psi$ mesons and $b$-hadrons in proton-antiproton collisions at $\sqrt{s}=1960$ GeV. The data correspond to an integrated luminosity of 39.7 pb$^{-1}$ collected by the CDF Run II detector. We find the integrated cross section for inclusive $J/\psi$ production for all transverse momenta from 0 to 20 GeV/$c$ in the rapidity range $|y|<0.6$ to be $4.08 \pm 0.02 (stat)^{+0.36}_{-0.33} (syst) \mu {\rm b}$. We separate the fraction of $J/\psi$ events from the decay of the long-lived $b$-hadrons using the lifetime distribution in all events with $p_T(J/\psi) > 1.25$ GeV/$c$. We find the total cross section for $b$-hadrons, including both hadrons and anti-hadrons, decaying to $J/\psi$ with transverse momenta greater than 1.25 GeV/$c$ in the rapidity range $|y(J/\psi)|<0.6$, is $ 0.330 \pm 0.005 (stat) ^{+0.036}_{-0.033} (syst) ~\mu{\rm b}$. Using a Monte Carlo simulation of the decay kinematics of $b$-hadrons to all final states containing a $J/\psi$, we extract the first measurement of the total single $b$-hadron cross section down to zero transverse momentum at $\sqrt{s}=1960$ GeV. We find the total single $b$-hadron cross section integrated over all transverse momenta for $b$-hadrons in the rapidity range $|y|<0.6$ to be $ 17.6 \pm 0.4 (stat)^{+2.5}_{-2.3} (syst) \mu{\rm b}$.
Integrated J/PSI cross section shown both uncorrected and corrected for branching ratio (5.88+-0.10PCT) of J/PSI into mu+mu-. Systematic error includes pT-dependent and fully correlated errors added in quadrature.
Differential cross section times branching ratio (5.88+-0.10PCT) into mu+mu- as a function of transverse momentum for the rapidity range -0.6 to 0.6 at a centre-of-mass energy of 1960 GeV.
Integrated bottom-hadron prouction cross section shown both uncorrected andcorrected for branching ratio (5.88+-0.10PCT) of J/PSI into mu+mu-. Systematic error includes pT-dependent and fully correlated errors added in quadrature.
The inclusive production ofK*±(890), ρρ(770), ω0(780) andf0(1,270) mesons is studied in\(\bar pp\) experiment at 32GeV/c in the MIRABELLE bubble chamber by the analysis of (K0π±) and (π+π−) invariant mass distributions. The inclusive cross sections are σ(K*±)=2.45±0.30 mb, σ(ρ0)=8.8 ±0.9 mb, σ(ω+)≃6.2 mb, and σ(f0)=2.2±0.7 mb. The C.M. longitudinal distribution of theK*±(890) is slightly shifted to the primary particles fragmentation regions; the ρ0 is produced more centrally. The studied mesons alone are responsible for 40% of final state poins. The production features of various resonances are compared with quark models predictions.
No description provided.
No description provided.
No description provided.
Energy spectra and angular distributions of protons emitted from the inclusive (d,xp) reaction on 9Be, 12C, 27Al, 58Ni, 93Nb, 181Ta, 208Pb, and 238U were measured at an incident deuteron energy of 100 MeV. The protons were detected at laboratory scattering angles of 6° to 120° and 8° to 120° for the targets with 9<~A<~27 and A>~58, respectively. Two triple-element and three double-element detector telescopes allowed for a low energy detection threshold of 4 to 8 MeV. The experimental results are presented in double-differential as well as angle- and energy-integrated cross sections. For all the nuclei studied, the energy spectra at forward angles show pronounced deuteron breakup peaks centered around approximately half of the incident deuteron energy. Qualitatively the energy spectra are similar for all nuclei at a given angle except in the region of the low-energy evaporation peak. As a function of target mass the evaporation cross sections are found to increase up to A=58 after which they decrease again. The total preequilibrium proton cross section is roughly (280±60)A1/3 mb. The angular distributions at the high emission energies are strongly forward peaked while the distributions of the low-energy protons are almost isotropic. The LAHET code system (LCS) was applied to calculate the proton production cross sections. Standard LCS calculations are found to underpredict the experimental cross sections at the very forward angles on the heavy target nuclei (A≳58). By adding incoherently the Coulomb breakup cross section of the deuteron to the LCS calculations the experimental cross sections are reproduced to within 10%. Although preequilibrium processes are a necessary ingredient in the LCS calculations of the large-angle cross sections, this code still fails to predict the experimental evaporation distributions.
All Cross Sections has errors 10 pct (for PB208 and U238 errors >10 pct) including systematic uncertainties. Tabulated proton multiplicities extracted from the experimental data by dividing proton cross section by reaction cross section using the empirical expression pi*(1.58A**(1/3)+.671*Ad**(1/3))**2 (taken from PR B348, 697).
None
No description provided.
None
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
None
Axis error includes +- 0.0/0.0 contribution (GLAUBER).
Axis error includes +- 0.0/0.0 contribution (GLAUBER).