Polarization of the scattered Λ has been measured in the reaction Λ+p→Λ+p. A total of 90 000 elastic events was recorded. Polarization was observed which decreased in magnitude with increasing momentum. For 0.1<~|t|<~0.4 GeV2 the polarization is P=−0.21±0.07 for p=110 GeV/c and is +0.01±0.04 at p=320 GeV/c. Results for 860 Λ¯−p elastic scatterings are also presented.
90000 ELASTIC EVENTS.
860 ELASTIC EVENTS.
Inclusive production of Λ0 hyperons by 300-GeV protons has been measured at fixed production angles in the laboratory between 0 and 9 mrad and laboratory momenta from 65 to 300 GeV/c. Three different solid targets were used: beryllium, copper, and lead. The A dependence of the data is suggestive of a collision model in which the hadron loses energy and gains transverse momentum as it leaves the nucleus. The experimental results are compared to such a model, and the implications are discussed.
No description provided.
No description provided.
No description provided.
We have measured the invariant cross section for inclusive ϕ production in proton-nucleus collisions at 400 GeV/c near Feynman x=0. For transverse momenta in the range between 0.8 and 3.5 GeV/c the ratio of ϕ to π− rises from 1 to 7%. We also report on correlations with particles opposite the ϕ in the center-of-mass system as they relate to the Okubo-Zweig-Iizuka rule.
No description provided.
We have studied backward baryon and meson production in π−p→pπ+π−π− at 8.0 GeV/c using a streamer chamber triggered by the detection of a fast forward proton. Our data sample (1227 events) displays prominent N*ρ and N*f quasi-two-body production. These states are investigated with regard to the peripheral nature of the production mechanism and sequential decay of the excited baryon and meson systems. The quasi-two-body production of N*ρ and N*f intermediate states is consistent with u-channel proton exchange as the dominant production mechanism. In the π+π−π− mass distribution we observe a 3- to 4- standard-deviation enhancement at M3π=1897±17 MeV/c2 with full width at half maximum = 110 ± 82 MeV/c2, but find no but find no evidence for backward A1 or A2 production. We observe Δ++(1232) production in the pπ+ effective mass distribution.
THESE VALUES ASSUME ONLY RHO(11) IS NON-ZERO. VALUES FOR OTHER RHO(MM) ARE QUOTED IN PAPER. SIG ERRORS INCLUDE OVER-ALL NORMALIZATION UNCERTAINTY, BUT NO BACKGROUND CORRECTIONS HAVE BEEN MADE.
STATISTICAL ERRORS ONLY, NO BACKGROUND CORRECTION.
STATISTICAL ERRORS ONLY, NO BACKGROUND CORRECTION.
We have measured differential cross sections for K−p→Σ+π− and π−p→pπ− at 3.0 and 5.1 GeV/c near the backward direction. At 3.0 GeV/c both have a dip near −u∼0.1 (GeV/c)2. At 5.1 GeV/c, dσdu for π−p→pπ− falls exponentially with slope 3.8±0.1 (GeV/c)−2 whereas dudσ for K−p→Σ+π− exhibits a decreasing slope for larger |u|. These data are discussed in terms of SU(3), and the relative importance of the helicity-flip and -non-flip amplitudes is investigated.
No description provided.
The reaction π + n → ω 0 p has been studied at 4 GeV/ c giving a total cross section of 313 ± 26 μ b. The sample of about 3500 ω 0 events produced in the forward direction has been used to determine the differential cross section and the spin density matrix elements. The effective trajectory for unnatural parity exchange has been determined by a comparison of ϱ 00 d σ /d t at different energies. A comparison of ϱ 00 d σ /d t has been made with the similar data for ϱ 0 production in this experiment allowing π-B exchange degeneracy and ϱ-ω interference to be investigated. These methods result in an unnatural trajectory consistent with that expected for the B-meson. A further study of ϱ-ω interference has been made by comparing the reactions π + n → ω 0 p and π − p → ω 0 n at similar energies. Our results on ω and ϱ production are combined with data on K ∗0 and K ∗0 production at 4 GeV/ c and an SU(3) sum rule relating the production of these four mesons is shown to be satisfied.
ASSUMING PREDOMINANTLY NUCLEON SPIN FLIP.
No description provided.
No description provided.
A partial wave analysis of the reaction π + n → π + π − π 0 p yields an A 0 2 production cross section of 225 ± 30μb for momentum transfer squared < 1 (GeV/ c ) 2 ; the differential cross-section and density matrix are presented and compared with ω 0 production in the light of theoretical models.
Axis error includes +- 10/10 contribution.
ASSUMING NO POPULATION OF HELICITY 2 DENSITY MATRIX ELEMENTS IN T-CHANNEL FRAME. THIS MM = 1+, 1-, 2+, 2- NOTATION REFERS TO THAT SUM OR DIFFERENCE OF HELICITY M DENSITY MATRIX ELEMENTS CORRESPONDING ASYMPTOTICALLY TO NATURAL (+) OR UNNATURAL (-) PARITY EXCHANGE.
We have measured the cross section, the angular distribution, and the Λ polarization for the reaction π−p→ΛK0. A spark-chamber spectrometer was used to collect 8400 ΛK0 events at fourteen beam momenta near ΣK threshold. Our data do not show the prominent cross-section enhancement suggested by some previous experiments. However, detailed structure in the cross section and the angular distribution agrees well with a simple model which includes a cusp effect at ΣK threshold.
No description provided.
BACKWARD-FORWARD PRODUCTION ASYMMETRY.
AVERAGE LAMBDA POLARIZATION.
We have used an optical spark-chamber spectrometer to perform a systematic study of the reaction π−p→ΛK0 at beam momenta between 930 and 1130 MeV/c. The cross section, angular distribution, and Λ polarization have been measured. We present our complete data from a sample of 11 400 events along with Legendre polynomial coefficients for the angular distributions. No striking cross-section enhancement at ΣK threshold is observed, but there is evidence for a small cusp effect. A simple model which takes account of the ΣK channel provides a good fit to our data.
No description provided.
No description provided.
No description provided.
We have applied the Estabrooks and Martin analysis to a sample of 5279 events produced in the reactionπ+n ⇒ pρ0, and have made a density matrix study, including a positivity analysis, of theJ = 0, 1, 2density matrix in the f0 region, using a sample of 2385 events.
S-CHANNEL MOMENTS.
T-CHANNEL MOMENTS.
S-CHANNEL FRAME.