The target asymmetry for the reaction γ p → K + Λ 0 was measured at the Bonn 2.5 GeV synchroton. Data were taken at a fixed kaon c.m. angle of 90° and at photon energies between 1.1 and 1.3 GeV. The kaons were detected in a large aperture magnetic spectrometer.
5 PCT TARGET POLARIZATION UNCERTAINTY INCLUDED IN QUOTED ERRORS.
A strong negative transverse polarization P z is found for forward produced lambdas observed in 10 and 16 GeV/ c K − p interactions. This indicates that exchanges of natural spin-parity are dominant in the production process. Using the polarization results, the d σ d u′ distributions for natural and unnatural spin-parity exchanges are derived. For unnatural exchanges, a dip is observed at u ′≅0.3 GeV 2 , which can be explained as a nonsense-wrong-signature zero of the N β trajectory. The value of P z for forward producted lambdas is constant with energy. This is in agreement with the triple-Regge model prediction, as is the fact that P z is constant as a function of M 2 s . The two non-transverse polarization components, P x and P y , have been measured and are found to be consistent with zero for all x values, unlike P z .
No description provided.
No description provided.
No description provided.
The differential elastic p−p scattering cross section was measured at 6 GeV/c at the Argonne Zero Gradient Synchrotron in the range P⊥2=0.60−1.0 (GeV/c)2 using a 65% polarized target and a 75% polarized proton beam of intensity 3 × 109 protons/pulse. The polarization of the recoil proton was simultaneously measured with a well calibrated carbon-target polarimeter. All three polarizations were measured perpendicular to the horizontal scattering plane. Our results indicate that P and T invariance are both obeyed to good precision even at our largest P⊥2. Parity invariance implies that the eight single-flip transversity cross sections are zero, so our data gives the magnitudes of the eight remaining pure spin cross sections where all spins are measured. We find that the four double-flip transversity cross sections are nonzero.
No description provided.
THE FIVE INDEPENDENT PURE FOUR-SPIN CROSS SECTIONS AS DERIVED FROM THE EIGHT MEASURED THREE-SPIN CROSS SECTIONS ASSUMING P AND T INVARIANCE. THE ABSOLUTE DIFFERENTIAL CROSS SECTION VALUES ASSUME THAT THE SPIN-AVERAGED D(SIG)/DT IS 2.25, 1.17, 0.365 AND 0.167 MB/GEV**2 FOR EACH VALUE OF PT**2 RESPECTIVELY.
WOLFENSTEIN PARAMETERS. POL(NAME=A) IS (N000) OR (0N00), THE ANALYZING POWER AVERAGED OVER TARGET OR BEAM POLARIZATION. POL(NAME=P) IS (00N0), THE POLARIZATION PARAMETER. TIME-REVERSAL INVARIANCE REQUIRES THAT P = A. POL.POL(NAME=CNN) IS (NN00) USING T-INVARIANCE. POL.POL(NAME=DNN) IS (0N0N). POL.POL(NAME=KNN) IS (N00N). POL.POL(NAME=C3N) IS A COMPONENT OF THE TRIPLE SPIN CORRELATION TENSOR. PARITY INVARIANCE REQUIRES THAT C3N = P.
We have studied backward meson and baryon production in π−p→nπ+π− at 8 GeV/c using a streamer chamber triggered by the detection of the interaction of the neutron in thick-plate optical spark chambers. Our data sample of 866 events is dominated by the quasi-two-body final states Δ−(1232)π+, nρ0, and nf0. We study the differential and total backward cross sections for these states and the decay angular distributions of the resonances. The results for the Δ− and ρ0 indicate that both nucleon and Δ exchange in the u channel are important in their production, while f0 production is, as expected, consistent with nucleon exchange.
No description provided.
BACKWARD DIP.
No description provided.
Measurements of the polarization parameter and angular distributions in pp elastic scattering at incident energies of 100 and 300 GeV are reported. The data cover the kinematic range 0.18<−t<2.0 GeV2. They are found to be consistent with absorption-model predictions.
No description provided.
No description provided.
THE ANGULAR DISTRIBUTION IN THE PUBLISHED FIGURE IS NORMALIZED TO D(SIG)/DT AT -T = 0.55 GEV**2 FROM AKERLOF ET AL., PR D14, 2864 (1976).
The ϒ′ state has been observed as a narrow resonance at M ( ϒ ′) = 10.02 ± 0.02 GeV in e + e − annihilations, using a NaI and lead-glass detector in the DORIS storage ring at DESY. The ratio Г ee Г had /Г tot of electronic, hadronic, and total widths has been measured to be 0.32 ± 0.13 keV. The parameters of the Г particle have also been determined to be/ M (Г)
The data renormalized to the expected level of continuum based on the ratioof R=sigma(hadrons)/sigma(mu+mu-) = 4.7 at sqrt(s) = 5 GeV.
The data renormalized to the expected level of continuum based on the ratioof R=sigma(hadrons)/sigma(mu+mu-) = 4.7 at sqrt(s) = 5 GeV.
Interference between the I u = 1 2 and I u = 3 2 baryon exchange amplitudes is observed in the reaction π − p → p π − π 0 , with the proton produced forward with cos θ p ∗ >0.8 . The Dalitz plot shows that the reaction is dominated by the quasi two body final states ρ − p( δ exchange) and N ∗0 (1670)π 0 ( N exchange ) , with δ(1238), N ∗ (1520) and higher mass N ∗ 's also produced. The relative phase between the ρ and the N ∗ (1670) production amplitudes is measured to be 135° ± 10° and is compared with the Regge pole signature factor phase predictions.
THE RELATIVE PRODUCTION AMPLITUDE PHASE FROM INTERFERENCE IS 135 +- 10 DEG.
Annihilation of e + e − into final states with a single electron has been studied with the PLUTO detector at the DORIS storage ring at CMS energies from 3.6 to 5 GeV. In the sample of 4-prong events without any detected photon we observe 21 events which we assign to the reaction e + e − → τ + τ − → νν e + νϱ 0 π . We obtain a branching ratio for τ + → νϱ 0 π + of 0.050 ± 0.015 with an overall systematic uncertainty of 30%. The data are consistent with the ϱπ coming from an A 1 meson.
No description provided.
We have measured the ratio of inclusive production of η to π0 at transverse momenta above 1.5 GeV/c. Results are presented for various meson and proton beams with momenta of 100, 200, and 300 GeV/c incident upon a hydrogen target. The ηπ0 production ratio is found to be independent of incident beam momentum and of the transverse and longitudinal momenta of production. The ratio for pion- and proton-induced reactions is 0.44 ± 0.05; for kaons, it is 0.74 ± 0.12.
No description provided.
No description provided.
No description provided.
Measurements of the cross section for the production of electron pairs with invariant masses between 4 and 8.7 GeV are presented as a function of the centre-of-mass energy ( s = 28 to s = 62 GeV ) of the colliding proton beams. A significant excess of events is observed in the region 8.7 to 10.3 GeV; these are ascribed to the ϒ(9.5 GeV) resonances and estimates of the production cross sections are given.
Axis error includes +- 40/40 contribution (Due to the uncertainty in efficiency).
Axis error includes +- 40/40 contribution (Due to the uncertainty in efficiency).