We present evidence for the existence of two strange J P = 1 − mesons; one at 1410 MeV/c 2 coupling principally to K ∗ (892)π , and the other at 1790 MeV/c 2 couplingto K π , K ∗ π and ϱ K. The data derive from a partial wave analysis of the K 0 π + π − system produced in the reaction K − p → K 0 π + π − n at 11 GeV /c . The production mechanism and quark model assignment of each state are discussed. The state at 1410 MeV/c 2 most naturally understood as the first radial excitation of the K ∗ (892), and the 1790 MeV/c 2 object can be interpreted as the triplet D wave partner to the 3 − K ∗ (1780).
No description provided.
We observe γγ → η′ production in the reaction e + e − → e + e − π + π − γ. We measure the product γ γγ ( η ′) B ( η ′ → ϱ 0 γ ) to be 1.14 ± 0.08 ± 0.11 keV. A first measurement of the γγ → η′ transition form factor is made for Q 2 up to 1 GeV 2 .
No description provided.
We present here the analysis of low mass dimuon events (1.8 < M μμ < 2.6 GeV / c 2 ) produced by positive and negative pion and proton beams at 200 GeV / c . Using the difference between the π - and the π + cross sections, and comparing to the Drell-Yan model, we find a K -factor of 2.47 ± 0.5. Only about 1 2 of the events can be attributed to the Drell-Yan mechanism. If the remaining events are attributed to muonic decays of D mesons we findan upper limit for the cross section of charmed meson production.
No description provided.
No description provided.
The production of very large transverse momentum hadron jets has been measured in the UA2 experiment at the CERN p p Collider for s = 540 GeV using a highly segmented calorimeter. The range of previously available cross sections for inclusive jet production is extended to p T = 150 GeV and the two-jet invariant mass distribution to m jj = 280 GeV with the largely increased data sample collected during the 1983 running period. The results are compared with the predictions of QCD models.
LISTED ERRORS INCLUDE STATISTICAL AND THE PT-DEPENDENT UNCERTAINTIES. THE ADDITIONAL OVERALL SYSTEMATIC UNCERTAINTY IS 45PCT.
LISTED ERRORS INCLUDE STATISTICAL AND THE M-DEPENDENT UNCERTAINTIES. THE ADDITIONAL OVERALL SYSTEMATIC UNCERTAINTY IS 45PCT.
We present an analysis of theKs0Ks0 system produced in the reaction π−p→Ks0Ks0n at 63 GeV based on ∼700 events in the kinematical region of |t|<0.5 GeV2. We concentrate on masses between 1,200 and 1,600 MeV where a double maximum structure is observed. Performing an amplitude analysis in this mass interval we find thatS,D0 andD+ waves contribute to the mass spectrum at approximately equal strength. The peaks are attributed to spin 2 waves. However, we failed to explained them by interferingf(1270),A2(1310) andf′(1520) resonances alone. While the first peak can be associated withf(1270)−A2(1310) production, an additional tensor meson is needed with mass of ∼1410 MeV and a narrow width for a description of the second one. The analysis as well as the energy dependence deduced from some publishedKs0Ks0 mass spectra suggests this object to be dominantly produced by a natural parity exchange. Because the 2++\(q\bar q\) nonet is already complete the nature of the new tensor meson is an open question.
No description provided.
The reaction K−p→K¯0π−p has been studied at 100 and 175 GeV/c and the reaction π−p→K0K−p at 50, 100, and 175 GeV/c. Both reactions are dominated by production of resonances, K*(890), K*(1430) and A2(1320), A2(2040), respectively. Production cross sections, t distributions, and decay-angular distributions are studied. Isoscalar natural-parity exchange is dominant. The energy dependence of the K* and A2 resonance production between 10 and 175 GeV/c is well described by a Regge-pole model. Our data on A2 corrects that in an earlier paper.
No description provided.
No description provided.
No description provided.
The reaction π−p→K0K−p has been measured from 50 to 175 GeV/c. The production characteristics of the A2 have been analyzed. We find spin and t dependence similar to lower energies, but the cross section falls rapidly with energy. In a Regge description of π−p→A2−p our data imply a rather small Pomeron-exchange component.
No description provided.
RAW CROSS SECTION WITHIN MASS CUTS.
No description provided.
We have measured the production of one and two large transverse momentum hadrons in p p and pp interactions in the range 2 < p T < 6 GeV/ c for the central rapidity region |y| < 0.9 at s = 63 and 31 GeV . No statistically significant difference between p p and pp collisions is observed. The results are in accordance with lowest order QCS perturbative calculations and rule out a large contribution of Constituent Interchange Model (CIM), di-quark of quark-fusion subprocesses in this kinematic range.
No description provided.
No description provided.
About 15 000 K − Φp events have been collected in the CERN Ω′ spectrometer. A partial-wave decomposition of the K − Φ system is performed. The 1 + SO + wave is dominant. The 0 − P0 + and 2 − P0 + waves are important and show resonant behaviour at ∼ 1.83 GeV (Γ ∼ 0.25 GeV) and ∼ 1.73 GeV (Γ ∼ 0.22 GeV) respectively. The first one can be interpreted as the second radial excitation of the kaon while the second one can be identified as one of the two L mesons.
No description provided.
PARTIAL WAVE AMPLITUDE SHOWING POSSIBLE EXISTENCE OF L MESON AT 1.73 GEV (WIDTH = 0.22 GEV) AND RADIAL EXCITATION OF THE KAON AT 1.83 GEV (WIDTH = 0.25 GEV).
We have measured the electron, muon, and charged-hadron pair production rates in two-phonon interactions for invariant masses above 2.0 GeV over a large of momentum transfer. The cross sections for electron and muon pairs show good agreement with the QED predictions at both small and large momentum transfer. The observed rate of hadron production is less than 6% of the rate that QED predicts for point-like hadrons, consistent with recent leading-order QCD calculations.
LOW Q**2 CROSS SECTIONS.
DIFFERENTIAL CROSS SECTIONS IN THE INVARIANT MASS FOR MUON AND ELECTRON PAIRS IN THE UNTAGGED, LOW Q**2 REGION.
HIGH Q**2 CROSS SECTIONS.