The differential cross section has been measured using 940 events from the BNL 30-inch deuterium bubble chamber. Events were selected without regard to length of the deuteron, and so wide-angle scatters are included. The data are fitted well by a Glauber model with reasonable assumptions about the parameters.
No description provided.
INTEGRATED CROSS SECTION USING EXPONENTIAL FIT TO FORWARD PEAK (SLOPE = 25.2 +- 1.4 GEV**-2).
We have studied the K ππ system in the 14.3 GeV/ c reactions K − p → K − π + π − p, K − p → K 0 π − π 0 and K − p → K 0 π + π − n . The data have been obtained from a 500 000 picture exposure of the CERN 2m HBC. The first two final states are dominated by Q-production in the Kππ system; there is also an L-signal at M (K ππ ) ∼ 1.75 GeV. The reaction cross sections are compared to K − p data at other energies. We discuss the K ππ mass dependence of the diffractive production slope. Evidence is presented for a Q − p versus Q + p differential cross section cross-over around | t | = 0.17 GeV 2 . A t -channel isospin analysis for the KN → K ∗(890)π N channels in the Q-region shows that the I = 1 exchange amplitude is ⋍ 10% of the dominant I = 0 exchange amplitude. The K ππ decay distributions indicate a predominant J P = 1 + state in the Q-region, and an important J P = 2 − contribution in the L-region. We find neither s -channel nor t -channel helicity conservation at the meson vertex in the Q- or L-regions. The K π angular correlation moments within the K ππ diffractive system are characteristic of K π elastic scattering, suggesting a π -exchange Deck-type production mechanism. There is evidence for a Kf 0 and κπ contribution (where κ is the J P (K π ) = 0 + state) to the diffractive K ππ system. A fit to the K − π + π − and K 0 π − π 0 Dalitz-plot distributions for the Q-re gion indicates that the ratio of K ϱ to K ∗ π decay amplitudes decreases with increasing K ππ mass.
No description provided.
The differential cross sections for the reaction γ + n → π 0 + n have been measured at pions angles of 45°, 60°, 105°, 120° and 140° in the c.m.s. for photon energies of 500–900 MeV. Both π 0 meson and recoil neutron from a liquid deuterium target were detected with a pair of Čerenkov counters combined with lead spark chambers and a hodoscope consisting of 16 modules of plastic scintillation counters.
We present experimental results on the K + n → K + n differential cross sections measured in deuterium at 13 momenta between 0.64 and 1.51 GeV/ c .
REACTION HAS A SPECTATOR PROTON. WHILE SOME DEUTERIUM CORRECTIONS HAVE BEEN APPLIED, THESE DATA ARE NOT DIVIDED BY THE DEUTERIUM FORM FACTOR APPEARING IN THE IMPULSE APPROXIMATION.
The reaction γp→; π + π − p in the energy range 4.1 to 6.2 GeV has been studied with a tagged photon beam incident on a liquid hydrogen target in the DESY one-meter streamer chamber. The reaction is analysed in terms of the longitudinal phase space (LPS) method. The one-pion-exchange model for Δ(1236) production and decay is examined. For the diffractive part of the LPS a dual model with pomeron exchange is investigated. In particular, the s -channel helicity conservation dual model of Dewey and Humpert describes the data well.
No description provided.
CORRECTED FOR LOSSES AT SMALL T (UNLIKE VALUES OF 'REF 1'). BACKGROUND SUBTRACTION ERROR HAS BEEN ADDED QUADRATICALLY TO THE STATISTICAL ERROR.
No description provided.
We have made a study of the coherent reaction K + d → K 0 π + d at 2 GeV/ c , using data obtained in the Lawrence Berkeley Laboratory 25 inch bubble chamber. The cross section for this reaction is 324 ± 25 μ b, after correction for invisible K 0 decays. This reaction is dominated primarily by vector exchange. We determine the parameters of the ω trajectory to be α ω = (0.33 ± 0.04) + t .
No description provided.
SLOPE IS 9.4 +- 0.5 GEV**-2 FOR -T > 0.02 GEV**2 AND 10.4 +- 0.6 GEV**-2 FOR -TP > 0.
No description provided.
The differential cross section for the charge exchange p p → n n has been measured with high statistics at 7.76 GeV/ c and at 5.0 GeV/ c . The 7.76 GeV/ c data show a very narrow [ Δt ⪅ 0.01 (GeV/ c ) 2 ] forward peak superposed on a slow exponential fall-off.
No description provided.
No description provided.
INTEGRATED CROSS SECTIONS FROM EXPONENTIAL FIT.
The polarization of recoil protons from proton Compton scattering has been measured at an angle of 90° c.m.s. in the region of the second nucleon resonance. The scattered photons were detected by a telescope which consisted of a lead plate converter, scintillation-counter hodoscopes and a Ćerenkov counter, The angles and momenta of recoil protons were analyzed by a magnet with four spark chambers. The polarization of protons was obtained from the asymmetry in the elastic scattering of protons on carbon in a spark chamber.
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
Cross sections for resonance production in the reactions π ± p → p π ± π + π − at 16 GeV/ c are determined by a maximum likelihood fit, making use of the measurements of all individual events. The reactions are described by a simple parametrization based on an incoherent superposition of amplitudes for quasi two-body and quasi three-body processes and a non-resonant backgroud. In this way the reflections are accounted for in a consistent way. Thus cross sections are obtained for Δ ++ , Δ 0 , ρ 0 and f 0 production which do not suffer from the uncertainties of background subtraction typical of the usual technique of fitting individual mass distributions.
TWO PARTICLE RESONANCE CROSS SECTIONS.
CHANNEL FRACTIONS FROM THE FITS. THE AUTHORS WARN AGAINST DERIVING CROSS SECTIONS FOR THREE-PARTICLE RESONANCES.
The asymmetry of the cross section for π + photoproduction from a polarized butanol target has been measured at a c.m. angle 90° and photon energies between 300 and 900 MeV by a single-arm spectrometer detecting positive pions. Our results indicate that the asymmetry has clear positive peaks at photon energies 400 and 700 MeV with a deep valley at about 600 MeV. The general feature of the results is well reproduced by the phenomenological analyses made by Walker and ourselves; however, the best fit to the polarized target asymmetry data seems to give a somewhat different set of parameters from that given by Walker.
No description provided.