Results are presented on vector meson production in the hypercharge exchange reactions: π + p → K ∗+ (890) Y + and K − p→ ρ − Y + where Y + is either Σ + or Y ∗+ (1385). These reactions have been studied at 7 GeV/ c and 11.5 GeV/ c using the SLAC Hybrid Facility. Total and differential cross sections, hyperon polarization, and vector meson decay angular distributions are presented. We find that reactions with Σ + production are dominated by natural parity exchange. The Y ∗ (1385) reactions are consistent with substantial natural parity exchange contributions but also show significant unnatural parity exchange. The differential cross sections and polarization measurements for the vector meson production are compared to the pseudoscalar production reactions.
Axis error includes +- 20/20 contribution.
Axis error includes +- 20/20 contribution.
Axis error includes +- 20/20 contribution.
Measurements ofR, sphericity and thrust are presented for c.m. energies between 12 and 31.6 GeV. A possible contribution of at\(\bar t\) continuum can be ruled out for c.m. energies between 16 and 31 GeV.
No description provided.
We report the measurement of the reaction e + + e − → hadronic jets at a center-of-mass energy √ s =30 GeV using the MARK-J detector at PETRA. By measuring the energy and angular distribution of both neutrals and charged particles we were able to isolate unambiguously the three-jet events in a kinematic region where the backgrounds from q q and phase space contributions and other processes are small. Various comparisons of the data with quantum chromodynamics were made. The relative yield of three-jet events and the shape distribution of the events enable us to determine α s = 0.23 ± 0.02 (statistical error) with a systematic error of ± 0.04.
OBLATENESS AND THRUST DISTRIBUTIONS FOR NARROW AND BROAD JETS AT 30 GEV. THESE DATA ARE SOMEWHAT ANALYSIS AND DETECTOR DEPENDENT.
No description provided.
A study is presented of the inclusive production cross sections of K ∗± (892) vector mesons in pp interactions at 12 and 24 GeV/ c and in π + p interactions at 16 GeV/ c . The K ∗± inclusive cross section is ∼0.9 mb for both pp at 24 GeV/ c and π + p interactions at 16 GeV/ c . For pp interactions, σ( K ∗+ ) and σ( K ∗− ) are seen to rise with energy, showing a threshold behaviour. In both pp and π + p interactions, σ( K ∗+ ) largely exceeds σ( K ∗− ) at these energies and this excess is interpreted as K ∗+ production by beam and target fragmentations. The decays of K ∗±0 yield ∼30% of the K 0 observed in the final states. The p T 2 dependence of both K ∗+ and K ∗ − cross sections is described by an exponential with slope of ∼3.3 (GeV/ c ) −2 . The longitudinal momentum spectra for K ∗+ in 16 GeV/ c π + p and 24 GeV/ c pp interactions are similar in shape in the target hemisphere. The K ∗− spectra are similar over the whole kinematic region when viewed in the quark c.m.s. and point to a central production mechanism. Comparing K ∗+ and ρ 0 production, striking similarities are found.
No description provided.
ASSUMED SIG(KS)=SIG(KL).
No description provided.
We present the first data on photon-photon annihilation into hadrons for CM energies > 1 GeV obtained with the detector PLUTO at the e + e − storage ring PETRA. Cross sections are extracted using an inelastic eγ scattering formalism. The results are compared to expectations from Regge-like models.
DEPENDENCE OF CROSS SECTION FOR ELECTRON-PHOTON SCATTERING (ANALOGOUS TO HAND'S FORMULA) ON VISIBLE HADRONIC ENERGY, CALCULATED BY TAKING PION MASSES FOR ALL CHARGED PARTICLES.
The cross section for the process e + e − → multihadrons has been measured at the highest PETRA energies. We measure R (the total cross section in units of the point-like e + e - → μ + μ - cross section) to be 2.9 ± 0.7, 4.0 ± 0.5, 4.6 ± 0.4 and 4.2 ± 0.6 at s of 22, 27.7, 30 and 31.6 GeV, respectively. The observed average multiplicity, together with existing low energy data, indicate a rapid increase in multiplicity with increasing energy.
STATISTICAL ERRORS ONLY. RADIATIVE CORRECTIONS APPLIED AND TAU HEAVY LEPTON CONTRIBUTION SUBTRACTED. AVERAGE VALUE OF R FOR ALL THESE DATA IS 4.14 +- 0.26.
AVERAGE CHARGE MULTIPLICITY. ADDITIONAL, SYSTEMATIC ERROR IS ABOUT 1.5.
The inclusive γ and π0 momentum distributions at the ψ have been measured. Using these data and estimates of η production, it is found that (4.1 ± 0.8)% of ψ decays contain a direct photon with energy greater than 60% of the beam energy. The expected momentum distribution for direct photons calculated to lowest order in quantum chromodynamics is qualitatively different from that observed in the data.
INCLUSIVE PHOTON AND PI0 MOMENTUM DISTRIBUTION.
We present a measurement of the cross section for hadron production by e+e− annihilation in the vicinity of the previously observed resonance near 3.77 GeV. The data are used to determine the parameters of the ψ(3770) resonance. The values found are: mass, 3764±5 MeV/c2, total width, 23.5±5 MeV, and partial width to electron pairs, 276±50 eV.
THESE RESULTS ARE ALSO IN THE THESIS OF R. H. SCHINDLER, SLAC-219 (1979), THE RECORD OF WHICH CONTAINS THE TABULATED CROSS SECTIONS.
BREIT-WIGNER RESONANCE PLUS BACKGROUND FIT TO RADIATIVELY CORRECTED DATA YIELDS RESONANCE MASS OF 3764 +- 5 MEV, TOTAL WIDTH OF 23.5 +- 5 MEV AND PARTIAL WIDTH TO ELECTRON PAIRS OF 276 +- 50 EV.
PEAK CROSS SECTION FOR D MESON PAIR PRODUCTION AT PSI(3770) RESONANCE. J/PSI, PSI(3684) AND CONTINUUM BACKGROUND (R=2.5) SUBTRACTED.
In order to determine the ηNN coupling constant we have measured the two reactions K − p→ Λη and K − p→ Λπ 0 with a magnetic wire chamber spectrometer which contained a gamma counter for the γγ decays of π 0 and η. The Λ polarization and the differential cross sections are given. The latter have quite different u dependences. Their ratio is interpreted, in terms of a nucleon-Regge exchange model, as the effect of a small ηNN coupling constant for which we obtain G η NN 2 = G π NN 2 · (0.26 ± 0.10) as allowed by SU(3). The large value given by Heisenberg's non-linear field theory, G η NN 2 = G π NN 2 · 0.9, is excluded by this measurement if the characteristic u dependence of the Λπ 0 channel is attributed to N α Regge exchange.
Axis error includes +- 10/10 contribution.
No description provided.
Axis error includes +- 10/10 contribution.
In partial wave analyses of the ( π − π − π + ) system, substantial shape changes of the 1 + S ( ϱπ ) intensity as a function of t , and relative phase changes of ≈ 90°, provide compelling evidence for a resonant A 1 of mass ≈ 1280 MeV and width ≈ 300 MeV.
No description provided.