Measurements of two-particle correlations on transverse momentum $p_t$ for Au-Au collisions at $\sqrt{s_{NN}} = 130$ GeV are presented. Significant large-momentum-scale correlations are observed for charged primary hadrons with $0.15 \leq p_t \leq 2$ GeV/$c$ and pseudorapidity $|\eta| \leq 1.3$. Such correlations were not observed in a similar study at lower energy and are not predicted by theoretical collision models. Their direct relation to mean-$p_t$ fluctuations measured in the same angular acceptance is demonstrated. Positive correlations are observed for pairs of particles which have large $p_t$ values while negative correlations occur for pairs in which one particle has large $p_t$ and the other has much lower $p_t$. The correlation amplitudes per final state particle increase with collision centrality. The observed correlations are consistent with a scenario in which the transverse momentum of hadrons associated with initial-stage semi-hard parton scattering is dissipated by the medium to lower $p_t$.
Symmetrized pair-density net ratios $\widehat{r} [X(p_{t1}),X(p_{t2})]-1$ for all nonidentified charged primary particles for most-central Au-Au collision events at $\sqrt{s_{NN}}=130$ GeV.
Symmetrized pair-density net ratios $\widehat{r}[X(p_{t1}),X(p_{t2})]-1$ for all nonidentified charged primary particles for mid-central Au-Au collision events at $\sqrt{s_{NN}}=130$ GeV.
Symmetrized pair-density net ratios $\widehat{r}[X(p_{t1}),X(p_{t2})]-1$ for all nonidentified charged primary particles for mid-peripheral Au-Au collision events at $\sqrt{s_{NN}}=130$ GeV.
The pseudorapidity asymmetry and centrality dependence of charged hadron spectra in d+Au collisions at $\sqrt{s_{NN}}=200$ GeV are presented. The charged particle density at mid-rapidity, its pseudorapidity asymmetry and centrality dependence are reasonably reproduced by a Multi-Phase Transport model, by HIJING, and by the latest calculations in a saturation model. Ratios of transverse momentum spectra between backward and forward pseudorapidity are above unity for \pT below 5 GeV/$c$. The ratio of central to peripheral spectra in d+Au collisions shows enhancement at 2 $<$ \pT $<$ 6 GeV/$c$, with a larger effect at backward rapidity than forward rapidity. Our measurements are in qualitative agreement with gluon saturation and in contrast to calculations based on incoherent multiple partonic scatterings.
The p$_T$ spectra of charged hadrons for various centrality classes.
The pseudorapidity dependence of charged particle densities for various centrality classes.
The ratio of charged hadron spectra in the backward rapidity to forward rapidity region for minimum bias and ZDC-d neutron-tagged events.
Two particle correlations between identified meson and baryon trigger particles with 2.5 < p_T < 4.0 GeV/c and lower p_T charged hadrons have been measured at midrapidity by the PHENIX experiment at RHIC in p+p, d+Au and Au+Au collisions at sqrt(s_NN) = 200 GeV. The probability of finding a hadron near in azimuthal angle to the trigger particle is almost identical for leading mesons and baryons for non-central Au+Au. The yield for both trigger baryons and mesons is significantly higher in Au+Au than in p+p and d+Au, except for trigger baryons in central collisions. The baryon excess is likely to arise predominantly from hard scattering processes.
$\Delta\phi$ distributions for meson and baryon triggers with 2.5 < $p_T$ < 4.0 GeV/$c$ and associated charged hadrons with 1.7 < $p_T$ < 2.5 GeV/$c$ for five centralities in Au+Au collisions.
$\Delta\phi$ distributions for meson triggers with 2.5 < $p_T$ < 4.0 GeV/$c$ and associated charged hadrons with 1.7 < $p_T$ < 2.5 GeV/$c$ in $d$+Au collisions.
$\Delta\phi$ distributions unidentified triggers with 2.5 < $p_T$ < 4.0 GeV/$c$ and associated charged hadrons with 1.7 < $p_T$ < 2.5 GeV/$c$ in $p$+$p$ collisions.
We have measured the cross section $\sigma(e^+e^-\to \pi^+\pi^- \gamma)$ at an energy $W=m_\phi=1.02$ GeV with the KLOE detector at the electron-positron collider DA$\Phi$NE. From the dependence of the cross section on the invariant mass of the two-pion system, we extract $\sigma(e^+e^-\to \pi^+\pi^-)$ for the mass range $0.35<s<0.95$ GeV$^2$. From this result, we calculate the pion form factor and the hadronic contribution to the muon anomaly, $a_\mu$.
The differential cross section as a function of the invariant mass of the di-pion system in the angular region THETA(PIPI) <15 DEGREES or THETA(PIPI) >165 DEGREES and THETA(PI) in the region 0 to 180 DEGREES.
The physical cross section for E+ E- --> PI+ PI- including FSR and vacuum polarization effects.
The pion form factor with FSR and vacuum polarization effects removed.
Measurements of the production of high transverse momentum direct photons by a 515 GeV/c piminus beam and 530 and 800 GeV/c proton beams in interactions with beryllium and hydrogen targets are presented. The data span the kinematic ranges of 3.5 < p_T < 12 GeV/c in transverse momentum and 1.5 units in rapidity. The inclusive direct-photon cross sections are compared with next-to-leading-order perturbative QCD calculations and expectations based on a phenomenological parton-k_T model.
Invariant cross sections per nucleon for P BE collisions at 800 GeV.
Invariant cross sections per nucleon for P BE collisions at 530 GeV.
Invariant cross sections per nucleon for PI- BE collisions at 515 GeV.
Mid-rapidity open charm spectra from direct reconstruction of $D^{0}$($\bar{D^0}$)$\to K^{\mp}\pi^{\pm}$ in d+Au collisions and indirect electron/positron measurements via charm semileptonic decays in p+p and d+Au collisions at \srt = 200 GeV are reported. The $D^{0}$($\bar{D^0}$) spectrum covers a transverse momentum ($p_T$) range of 0.1 $<p_T<$ 3 \GeVc whereas the electron spectra cover a range of 1 $<p_T<$ 4 GeV/$c$. The electron spectra show approximate binary collision scaling between p+p and d+Au collisions. From these two independent analyses, the differential cross section per nucleon-nucleon binary interaction at mid-rapidity for open charm production from d+Au collisions at RHIC is $d\sigma^{NN}_{c\bar{c}}/dy$=0.30$\pm$0.04 (stat.)$\pm$0.09(syst.) mb. The results are compared to theoretical calculations. Implications for charmoniumm results in A+A collisions are discussed.
Inclusive electrons yield versus transverse momentum in D+AU collisions Data points at PT = 2.2, 2.7 and 3.5 GeV/c was obtained using only the TPC (Time Projection Chamber) and cover a pseudo-rapidity range of -1<eta<1, while other points were obtained using both a prototypeTime-of-Flight System and the TPC and cover a pseudo-rapidity range of -1<eta<0.
Inclusive electrons yield versus transverse momentum in P+P collisions.
D0 yield versus transverse momentum in D+AU collisions.
Single pi0 photoproduction has been studied with the CB-ELSA experiment at Bonn using tagged photon energies between 0.3 and 3.0 GeV. The experimental setup covers a very large solid angle of about 98% of 4 pi. Differential cross sections (d sigma)/(d Omega) have been measured. Complicated structures in the angular distributions indicate a variety of different resonances being produced in the s channel intermediate state gamma p --> N* (Delta*) --> p pi0. A combined analysis including the data presented in this letter along with other data sets reveals contributions from known resonances and evidence for a new resonance N(2070)D15.
Total cross section for GAMMA P --> P PI0 obtained by integration of the angular distributions and extrapolation into the forward and backward regions using the PWA result.
Differential cross section as a function of c.m. angle for the photon energy range 300 to 425 GeV.
Differential cross section as a function of c.m. angle for the photon energy range 425 to 550 GeV.
Results are presented on the photoproduction of isolated prompt photons, inclusively and associated with jets, in the gamma p center of mass energy range 142 < W < 266 GeV. The cross sections are measured for the transverse momentum range of the photons 5 < E_T^gamma < 10 GeV and for associated jets with E_T^jet > 4.5 GeV. They are measured differentially as a function of E_T^gamma, E_T^jet, the pseudorapidities eta^gamma and eta^jet and estimators of the momentum fractions x_gamma and x_p of the incident photon and proton carried by the constituents participating in the hard process. In order to further investigate the underlying dynamics, the angular correlation between the prompt photon and the jet in the transverse plane is studied. Predictions by perturbative QCD calculations in next to leading order are about 30% below the inclusive prompt photon data after corrections for hadronisation and multiple interactions, but are in reasonable agreement with the results for prompt photons associated with jets. Comparisons with the predictions of the event generators PYTHIA and HERWIG are also presented.
Inclusive prompt photon differential cross section as a function of ET.
Inclusive prompt photon differential cross section as a function of the pseudorapidity.
Prompt photon cross section as a function of the photon ET with an additional jet requirement.
The cross sections for single vector boson production in the We ν and Zee channels are measured from the data collected by the ALEPH detector at LEP for centre-of-mass energies between 183 and 209 GeV. These data correspond to a total integratedluminosity of 683 pb −1 . Single-W production is studied in both hadronic and leptonic decay channels. Hadronic and dimuon decays are used for single-Z production. The measured cross sections agree with the Standard Model predictions.
Measured cross sections for single W production in the leptonic and hadronic decay channels of the W separately and combined.
The measured single Z0 production cross section.
Z0 --> MU+ MU- cross section averaged over all c.m. energies.
Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at $\sqrt{s_{_{NN}}}$= 200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in $p+p$ at the same energy. Elliptic anisotropy, $v_2$, is found to reach its maximum at $p_t \sim 3$ GeV/c, then decrease slowly and remain significant up to $p_t\approx 7$ -- 10 GeV/c. Stronger suppression is found in the back-to-back high-$p_t$ particle correlations for particles emitted out-of-plane compared to those emitted in-plane. The centrality dependence of $v_2$ at intermediate $p_t$ is compared to simple models based on jet quenching.
Azimuthal correlations in Au+Au col- lisions (squares) as a function of centrality (peripheral to cen- tral from left to right) compared to minimum bias azimuthal correlations in p + p collisions (circles). Errors are statistical only.
$v_{2}$ of charged particles as a function of transverse momentum from the two-particle cumu- lant method (triangles) and four-particle cumulant method (stars). Open circles show the 2-particle correlation results after subtracting the correlations measured in p + p collisions. Only statistical errors are shown.
Upper panel, Azimuthal distributions of associated particles for trigger particles in-plane (squares) and out-of-plane (triangles) for Au+Au collisions at centrality 20-60%. Open symbols are reflections of solid symbols around $\Delta \phi$ = 0 and $\Delta \phi$ = $\pi$. Elliptic flow contribution is shown by dashed lines. Lower panel, Distributions after substracting elliptic flow, and the corresponding measurement in p + p collisions (histogram).