We present results on the differential cross sections for the process K + n → K 0 p extracted from the reaction K + d → K 0 pp measured at 13 momenta between 0.64 and 1.51 GeV/ c .
THESE TOTAL CROSS SECTIONS WERE PRESENTED WITH MORE EXPERIMENTAL DETAILS IN G. GIACOMELLI ET AL., NP B37, 577 (1972).
REACTION HAS A SPECTATOR PROTON. THESE ARE NOT FREE NEUTRON CROSS SECTIONS. A 250 MEV/C MOMENTUM CUT IS APPLIED TO THE SPECTATOR MOMENTUM AND D(SIG)/DOMEGA THEN NORMALIZED TO THE UNCUT TOTAL CROSS SECTION FOR K+ DEUT --> K0 P P.
Cross sections are presented for the K + p interacttions with 2, 3, 4 and 5 particles in the final state for incident momenta between 2.1 and 2.7 GeV/c. The results are compared with those from other experiments at nearby momenta.
Axis error includes +- 0.0/0.0 contribution (?////).
The proof is given for the existence of the reaction e + e − → h ± h ∓ in the energy range 1400–2400 MeV, and its energy dependence is compared with that of e + e − → e ± e ∓ , in the same experimental conditions of observation. The exponent of the s -dependence of the ratio α = (e + e − → h ± h ∓ )/ (e + e − → e ± e ∓ ) is measured to be n = 2.08 ± 0.45, in the s -range (1.96 − 5.76) GeV 2 , on the basis of 51 e + e − → h ± h ∓ events and 8918 e + e − → e ± e ∓ events observed.
CROSS SECTION FOR PRODUCTION OF CHARGED HADRON PAIRS.
None
STATISTICAL ERRORS ONLY.
We report a high-statistics measurement of the neutron-proton charge-exchange differential cross section for incident momenta 3 to 12 GeVc, and four-momentum transfers 0.003 to 0.85 (GeVc)2. The data are normalized absolutely to ±20%. The differential cross section is characterized by a sharp peak at small momentum transfers, with a gentler exponential behavior at large momentum transfers. This shape is remarkably independent of the incident momentum.
No description provided.
No description provided.
Total and differential cross sections are presented for the reaction KL 0p→KS 0p from 1.3 to 8.0 GeVc as measured in an exposure of the Stanford Linear Accelerator Center 40-in. hydrogen bubble chamber to a neutral beam. The forward points of dσ(KL 0p→KS 0p)dt together with K+n and K−n total cross sections are used to determine the intercept of the effective Regge trajectory, α(0)=0.47±0.09, and the regeneration phase ϕf=−43∘±8∘.
No description provided.
FULL T REGION.
FULL T REGION.
We have measured large-angle electron-positron pairs from the reaction γ +Be → Be+e + +e − in the e + e − invariant-mass region of 610 < m < 850 MeV/ c 2 . The phase of the photoproduction amplitude of the ϱ-meson at 4.1 – 6.1 GeV was found to deviate from pure imaginary by 11.8° ± 4.4° which corresponds to a ratio of the real to imaginary ϱ-nucleon amplitude of β = −0.2 ± 0.1.
No description provided.
Proton-proton total cross-sections have been measured at nine different energies between 179 and 555 MeV (607 and 1162 MeV/ c ) with a typical accuracy of 0.9%. The accuracy is limited by a poor knowledge of the Coulomb-nuclear interference region in elastic scattering.
No description provided.
In an analysis of the reaction K − n →Λ4π at 3 GeV c we find evidence for the production of the B(1220) resonance, mainly decaying in ωπ. For the mass and width we find (1236 ± 15) MeV c 2 and (132±20) MeV c 2 respectively. The cross section for the reaction K − n→ Λ +B(1220) is found to be (102±26) μ b.
No description provided.
The K L K S transmission regeneration of a K L beam traversing a liquid hydrogen target has been observed over the momentum interval 3.0–6.0 GeV/ c . Results are in good agreement with predictions based on dispersion relations.
Regeneration amplitude.
No description provided.