Showing 1 of 1 results
We present measurements of bulk properties of the matter produced in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, and 39 GeV using identified hadrons ($\pi^\pm$, $K^\pm$, $p$ and $\bar{p}$) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity ($|y|<$0.1) results for multiplicity densities $dN/dy$, average transverse momenta $\langle p_T \rangle$ and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.
The average number of participating nucleons (⟨Npart⟩) for various collision centralities in Au+Au collisions at √sNN = 7.7–39 GeV.
Midrapidity (|y| < 0.1) transverse momentum spectra for (b) π- in Au+Au collisions at √sNN = 7.7 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (a) π+ in Au+Au collisions at √sNN = 7.7 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (d) K− in Au+Au collisions at √sNN = 7.7 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (c) K+ in Au+Au collisions at √sNN = 7.7 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (f) p¯ in Au+Au collisions at √sNN = 7.7 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (e) p in Au+Au collisions at √sNN = 7.7 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (b) π− in Au+Au collisions at √sNN = 11.5 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (a) π+ in Au+Au collisions at √sNN = 11.5 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (d) K− in Au+Au collisions at √sNN = 11.5 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (c) K+ in Au+Au collisions at √sNN = 11.5 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (f) p¯ in Au+Au collisions at √sNN = 11.5 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (e) p in Au+Au collisions at √sNN = 11.5 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (b) π− in Au+Au collisions at √sNN = 19.6 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (a) π+ in Au+Au collisions at √sNN = 19.6 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (d) K− in Au+Au collisions at √sNN = 19.6 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (c) K+ in Au+Au collisions at √sNN = 19.6 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (f) p¯ in Au+Au collisions at √sNN = 19.6 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (e) p in Au+Au collisions at √sNN = 19.6 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (b) π− in Au+Au collisions at √sNN = 27 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (a) π+ in Au+Au collisions at √sNN = 27 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (d) K− in Au+Au collisions at √sNN = 27 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (c) K+ in Au+Au collisions at √sNN = 27 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (f) p¯ in Au+Au collisions at √sNN = 27 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (e) p in Au+Au collisions at √sNN = 27 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (b) π− in Au+Au collisions at √sNN = 39 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (a) π+ in Au+Au collisions at √sNN = 39 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (d) k- in Au+Au collisions at √sNN = 39 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (c) k+ in Au+Au collisions at √sNN = 39 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (f) pbar in Au+Au collisions at √sNN = 39 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (e) p in Au+Au collisions at √sNN = 39 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Centrality dependence of dN/dy normalized by ⟨Npart⟩/2 for π+, π−, K+, K−, p, and p ̄ at midrapidity (|y|<0.1) in Au+Au collisions at √sNN = 7.7 GeV. Errors shown are the quadrature sum of statistical and systematic uncertainties. For clarity, ⟨Npart⟩ uncertainties are not added in quadrature.
Centrality dependence of dN/dy normalized by ⟨Npart⟩/2 for π+, π−, K+, K−, p, and p ̄ at midrapidity (|y|<0.1) in Au+Au collisions at √sNN = 11.5 GeV. Errors shown are the quadrature sum of statistical and systematic uncertainties. For clarity, ⟨Npart⟩ uncertainties are not added in quadrature.
Centrality dependence of dN/dy normalized by ⟨Npart⟩/2 for π+, π−, K+, K−, p, and p ̄ at midrapidity (|y|<0.1) in Au+Au collisions at √sNN = 19.6 GeV. Errors shown are the quadrature sum of statistical and systematic uncertainties. For clarity, ⟨Npart⟩ uncertainties are not added in quadrature.
Centrality dependence of dN/dy normalized by ⟨Npart⟩/2 for π+, π−, K+, K−, p, and p ̄ at midrapidity (|y|<0.1) in Au+Au collisions at √sNN = 27 GeV. Errors shown are the quadrature sum of statistical and systematic uncertainties. For clarity, ⟨Npart⟩ uncertainties are not added in quadrature.
Centrality dependence of dN/dy normalized by ⟨Npart⟩/2 for π+, π−, K+, K−, p, and p ̄ at midrapidity (|y|<0.1) in Au+Au collisions at √sNN = 39 GeV. Errors shown are the quadrature sum of statistical and systematic uncertainties. For clarity, ⟨Npart⟩ uncertainties are not added in quadrature.
Centrality dependences of <pT> for π+, π−, K+, K−, p, and p ̄ at midrapidity (|y|<0.1) in Au+Au collisions at √sNN = 7.7 GeV. Errors shown are quadrature sum of statistical and systematic uncertainties where the latter dominates.
Centrality dependences of <pT> for π+, π−, K+, K−, p, and p ̄ at midrapidity (|y|<0.1) in Au+Au collisions at √sNN = 11.5 GeV. Errors shown are quadrature sum of statistical and systematic uncertainties where the latter dominates.
Centrality dependences of <pT> for π+, π−, K+, K−, p, and p ̄ at midrapidity (|y|<0.1) in Au+Au collisions at √sNN = 19.6 GeV. Errors shown are quadrature sum of statistical and systematic uncertainties where the latter dominates.
Centrality dependences of <pT> for π+, π−, K+, K−, p, and p ̄ at midrapidity (|y|<0.1) in Au+Au collisions at √sNN = 27 GeV. Errors shown are quadrature sum of statistical and systematic uncertainties where the latter dominates.
Centrality dependences of <pT> for π+, π−, K+, K−, p, and p ̄ at midrapidity (|y|<0.1) in Au+Au collisions at √sNN = 39 GeV. Errors shown are quadrature sum of statistical and systematic uncertainties where the latter dominates.
Variation of π−/π+, K−/K+, and p ̄/p ratios as a function of ⟨Npart⟩ at midrapidity (|y| < 0.1) in Au+Au collisions at 7.7 GeV. Errors shown are the quadrature sum of statistical and systematic uncertainties where the latter dominates.
Variation of π−/π+, K−/K+, and p ̄/p ratios as a function of ⟨Npart⟩ at midrapidity (|y| < 0.1) in Au+Au collisions at 11.5 GeV. Errors shown are the quadrature sum of statistical and systematic uncertainties where the latter dominates.
Variation of π−/π+, K−/K+, and p ̄/p ratios as a function of ⟨Npart⟩ at midrapidity (|y| < 0.1) in Au+Au collisions at 19.6 GeV. Errors shown are the quadrature sum of statistical and systematic uncertainties where the latter dominates.
Variation of π−/π+, K−/K+, and p ̄/p ratios as a function of ⟨Npart⟩ at midrapidity (|y| < 0.1) in Au+Au collisions at 27 GeV. Errors shown are the quadrature sum of statistical and systematic uncertainties where the latter dominates.
Variation of π−/π+, K−/K+, and p ̄/p ratios as a function of ⟨Npart⟩ at midrapidity (|y| < 0.1) in Au+Au collisions at 39 GeV. Errors shown are the quadrature sum of statistical and systematic uncertainties where the latter dominates.
Variation of K−/π−, p ̄/π−, K+/π+, and p/π+ ratios as a function of ⟨Npart⟩ at midrapidity (|y| < 0.1) in Au+Au collisions at 7.7 GeV. Errors shown are the quadrature sum of statistical and systematic uncertainties where the latter dominates.
Variation of K−/π−, p ̄/π−, K+/π+, and p/π+ ratios as a function of ⟨Npart⟩ at midrapidity (|y| < 0.1) in Au+Au collisions at 11.5 GeV. Errors shown are the quadrature sum of statistical and systematic uncertainties where the latter dominates.
Variation of K−/π−, p ̄/π−, K+/π+, and p/π+ ratios as a function of ⟨Npart⟩ at midrapidity (|y| < 0.1) in Au+Au collisions at 19.6 GeV. Errors shown are the quadrature sum of statistical and systematic uncertainties where the latter dominates.
Variation of K−/π−, p ̄/π−, K+/π+, and p/π+ ratios as a function of ⟨Npart⟩ at midrapidity (|y| < 0.1) in Au+Au collisions at 27 GeV. Errors shown are the quadrature sum of statistical and systematic uncertainties where the latter dominates.
Variation of K−/π−, p ̄/π−, K+/π+, and p/π+ ratios as a function of ⟨Npart⟩ at midrapidity (|y| < 0.1) in Au+Au collisions at 39 GeV. Errors shown are the quadrature sum of statistical and systematic uncertainties where the latter dominates.
The midrapidity (|y| < 0.1) dN/dy normalized by ⟨Npart⟩/2 as a function of √sNN for π±, K±, and p and p ̄ in 0–5% Au+Au collisions at BES energies. Errors shown are the quadrature sum of statistical and systematic uncertainties where the latter dominates.
⟨mT⟩ − m of π±, K±, and p and p ̄ as a function of √sNN . Midrapidity (|y| < 0.1) results are shown for 0–5% central Au+Au collisions at BES energies. The errors shown are the quadrature sum of statistical and systematic uncertainties where the latter dominates.
π−/π+, K−/K+, and p ̄/p ratios at midrapidity (|y| < 0.1) in central 0–5% Au+Au collisions at √sNN = 7.7, 11.5, 19.6, 27, and 39 GeV. Errors shown are the quadrature sum of statistical and systematic uncertainties where the latter dominates.
K/π ratio at midrapidity (|y| < 0.1) for central 0–5% Au+Au collisions at √sNN = 7.7, 11.5, 19.6, 27, and 39 GeV. Errors shown are the quadrature sum of statistical and systematic uncertainties where the latter dominates.
The GCE model particle yields fits shown along with standard deviations for Au+Au 7.7 and Au+Au 39 GeV in 0–5% central collisions. Uncertainties on experimental data represent statistical and systematic uncertainties added in quadrature.
The GCE model particle ratios fits shown along with standard deviations for Au+Au 7.7 and Au+Au 39 GeV in 0–5% central collisions. Uncertainties on experimental data represent statistical and systematic uncertainties added in quadrature.
The SCE model particle yields fits shown along with standard deviations for Au+Au 7.7 and Au+Au 39 GeV in 0–5% central collisions. Uncertainties on experimental data represent statistical and systematic uncertainties added in quadrature.
The SCE model particle ratios fits shown along with standard deviations for Au+Au 7.7 and Au+Au 39 GeV in 0–5% central collisions. Uncertainties on experimental data represent statistical and systematic uncertainties added in quadrature.
Chemical freeze-out parameter γS plotted vs ⟨Npart⟩ in GCE for particle yields fit. Uncertainties represent systematic errors.
Chemical freeze-out parameter μB plotted vs ⟨Npart⟩ in GCE for particle yields fit. Uncertainties represent systematic errors.
Chemical freeze-out parameter μS plotted vs ⟨Npart⟩ in GCE for particle yields fit. Uncertainties represent systematic errors.
Chemical freeze-out parameter Tch plotted vs ⟨Npart⟩ in GCE for particle yields fit. Uncertainties represent systematic errors.
Chemical freeze-out parameter R plotted vs ⟨Npart⟩ in GCE for particle yields fit. Uncertainties represent systematic errors.
Ratio of chemical freeze-out parameter γS between results from particle yield fits to particle ratio fits in GCE plotted vs ⟨Npart⟩. Uncertainties represent systematic errors.
Ratio of chemical freeze-out parameter μB between results from particle yield fits to particle ratio fits in GCE plotted vs ⟨Npart⟩. Uncertainties represent systematic errors.
Ratio of chemical freeze-out parameter μS between results from particle yield fits to particle ratio fits in GCE plotted vs ⟨Npart⟩. Uncertainties represent systematic errors.
Ratio of chemical freeze-out parameter Tch between results from particle yield fits to particle ratio fits in GCE plotted vs ⟨Npart⟩. Uncertainties represent systematic errors.
Chemical freeze-out parameter γS plotted vs ⟨Npart⟩ in SCE for particle yields fit. Uncertainties represent systematic errors.
Chemical freeze-out parameter μB plotted vs ⟨Npart⟩ in SCE for particle yields fit. Uncertainties represent systematic errors.
Chemical freeze-out parameter Tch plotted vs ⟨Npart⟩ in SCE for particle yields fit. Uncertainties represent systematic errors.
Chemical freeze-out parameter R plotted vs ⟨Npart⟩ in SCE for particle yields fit. Uncertainties represent systematic errors.
Ratio of chemical freeze-out parameter γS between yield and ratio fits in SCE plotted vs ⟨Npart⟩. Uncertainties represent systematic errors.
Ratio of chemical freeze-out parameter μB between yield and ratio fits in SCE plotted vs ⟨Npart⟩. Uncertainties represent systematic errors.
Ratio of chemical freeze-out parameter Tch between yield and ratio fits in SCE plotted vs ⟨Npart⟩. Uncertainties represent systematic errors.
Ratio of chemical freeze-out parameter γS between GCE and SCE results using particle ratios in fits plotted vs ⟨Npart⟩. Uncertainties represent systematic errors.
Ratio of chemical freeze-out parameter μB between GCE and SCE results using particle ratios in fits plotted vs ⟨Npart⟩. Uncertainties represent systematic errors.
Ratio of chemical freeze-out parameter Tch between GCE and SCE results using particle ratios in fits plotted vs ⟨Npart⟩. Uncertainties represent systematic errors.
Ratio of chemical freeze-out parameter γS between GCE and SCE results using particle yields in fits plotted vs ⟨Npart⟩. Uncertainties represent systematic errors.
Ratio of chemical freeze-out parameter μB between GCE and SCE results using particle yields in fits plotted vs ⟨Npart⟩. Uncertainties represent systematic errors.
Ratio of chemical freeze-out parameter Tch between GCE and SCE results using particle yields in fits plotted vs ⟨Npart⟩. Uncertainties represent systematic errors.
Ratio of chemical freeze-out parameter R between GCE and SCE results using particle yields in fits plotted vs ⟨Npart⟩. Uncertainties represent systematic errors.
Extracted chemical freeze-out temperature vs baryon chemical potential for (a) GCE and (b) SCE cases using particle yields as input for fitting. Curves represent two model predictions [81,82]. The gray bands represent the theoretical prediction ranges of the Cleymans et al. model [81]. Uncertainties represent systematic errors.
Extracted chemical freeze-out temperature vs baryon chemical potential for (a) GCE and (b) SCE cases using particle yields as input for fitting. Curves represent two model predictions [81,82]. The gray bands represent the theoretical prediction ranges of the Cleymans et al. model [81]. Uncertainties represent systematic errors.
Extracted chemical freeze-out temperature vs baryon chemical potential for (a) GCE and (b) SCE cases using particle yields as input for fitting. Curves represent two model predictions [81,82]. The gray bands represent the theoretical prediction ranges of the Cleymans et al. model [81]. Uncertainties represent systematic errors.
"Choice on constraints: Extracted chemical freeze-out temperatures shown in panels (a), (c), and (e) and baryon chemical potentials shown in panels (b), (d), and (f) for GCE using particle yields as input for fitting, respectively, for Au+Au collisions at √sNN = 7.7, 19.6, and 39 GeV. Results are compared for three initial conditions: μQ = 0, μQ constrained to B/2Q value, and μQ constrained to B/2Q along with μS constrained to 0. Uncertainties represent systematic errors."
"Choice on constraints: Extracted chemical freeze-out temperatures shown in panels (a), (c), and (e) and baryon chemical potentials shown in panels (b), (d), and (f) for GCE using particle yields as input for fitting, respectively, for Au+Au collisions at √sNN = 7.7, 19.6, and 39 GeV. Results are compared for three initial conditions: μQ = 0, μQ constrained to B/2Q value, and μQ constrained to B/2Q along with μS constrained to 0. Uncertainties represent systematic errors."
"Choice on constraints: Extracted chemical freeze-out temperatures shown in panels (a), (c), and (e) and baryon chemical potentials shown in panels (b), (d), and (f) for GCE using particle yields as input for fitting, respectively, for Au+Au collisions at √sNN = 7.7, 19.6, and 39 GeV. Results are compared for three initial conditions: μQ = 0, μQ constrained to B/2Q value, and μQ constrained to B/2Q along with μS constrained to 0. Uncertainties represent systematic errors."
"Choice on constraints: Extracted chemical freeze-out temperatures shown in panels (a), (c), and (e) and baryon chemical potentials shown in panels (b), (d), and (f) for GCE using particle yields as input for fitting, respectively, for Au+Au collisions at √sNN = 7.7, 19.6, and 39 GeV. Results are compared for three initial conditions: μQ = 0, μQ constrained to B/2Q value, and μQ constrained to B/2Q along with μS constrained to 0. Uncertainties represent systematic errors."
"Choice on constraints: Extracted chemical freeze-out temperatures shown in panels (a), (c), and (e) and baryon chemical potentials shown in panels (b), (d), and (f) for GCE using particle yields as input for fitting, respectively, for Au+Au collisions at √sNN = 7.7, 19.6, and 39 GeV. Results are compared for three initial conditions: μQ = 0, μQ constrained to B/2Q value, and μQ constrained to B/2Q along with μS constrained to 0. Uncertainties represent systematic errors."
"Choice on constraints: Extracted chemical freeze-out temperatures shown in panels (a), (c), and (e) and baryon chemical potentials shown in panels (b), (d), and (f) for GCE using particle yields as input for fitting, respectively, for Au+Au collisions at √sNN = 7.7, 19.6, and 39 GeV. Results are compared for three initial conditions: μQ = 0, μQ constrained to B/2Q value, and μQ constrained to B/2Q along with μS constrained to 0. Uncertainties represent systematic errors."
"Choice on including more particles: Extracted chemical freeze-out parameters (a) Tch, (b) μB, and (c) γS along with (d) χ2/ndf for GCE using particle yields as input for fitting. Results are compared for Au+Au collisions at √sNN = 39 GeV for four different sets of particle yields used in fitting. Uncertainties represent systematic errors."
"Choice on including more particles: Extracted chemical freeze-out parameters (a) Tch, (b) μB, and (c) γS along with (d) χ2/ndf for GCE using particle yields as input for fitting. Results are compared for Au+Au collisions at √sNN = 39 GeV for four different sets of particle yields used in fitting. Uncertainties represent systematic errors."
"Choice on including more particles: Extracted chemical freeze-out parameters (a) Tch, (b) μB, and (c) γS along with (d) χ2/ndf for GCE using particle yields as input for fitting. Results are compared for Au+Au collisions at √sNN = 39 GeV for four different sets of particle yields used in fitting. Uncertainties represent systematic errors."
"Choice on including more particles: Extracted chemical freeze-out parameters (a) Tch, (b) μB, and (c) γS along with (d) χ2/ndf for GCE using particle yields as input for fitting. Results are compared for Au+Au collisions at √sNN = 39 GeV for four different sets of particle yields used in fitting. Uncertainties represent systematic errors."
"Blast wave model fits of π±, K±, p and p p¯ T spectra in 0–5% central Au+Au collisions at √sNN = (a) 7.7, (b) 11.5, (c) 19.6, (d) 27, and (e) 39 GeV. Uncertainties on experimental data represent statistical and systematic uncertainties added in quadrature. Here, the uncertainties are smaller than the symbol size."
"Blast wave model fits of π±, K±, p and p p¯ T spectra in 0–5% central Au+Au collisions at √sNN = (a) 7.7, (b) 11.5, (c) 19.6, (d) 27, and (e) 39 GeV. Uncertainties on experimental data represent statistical and systematic uncertainties added in quadrature. Here, the uncertainties are smaller than the symbol size."
"Blast wave model fits of π±, K±, p and p p¯ T spectra in 0–5% central Au+Au collisions at √sNN = (a) 7.7, (b) 11.5, (c) 19.6, (d) 27, and (e) 39 GeV. Uncertainties on experimental data represent statistical and systematic uncertainties added in quadrature. Here, the uncertainties are smaller than the symbol size."
"Blast wave model fits of π±, K±, p and p p¯ T spectra in 0–5% central Au+Au collisions at √sNN = (a) 7.7, (b) 11.5, (c) 19.6, (d) 27, and (e) 39 GeV. Uncertainties on experimental data represent statistical and systematic uncertainties added in quadrature. Here, the uncertainties are smaller than the symbol size."
"Blast wave model fits of π±, K±, p and p p¯ T spectra in 0–5% central Au+Au collisions at √sNN = (a) 7.7, (b) 11.5, (c) 19.6, (d) 27, and (e) 39 GeV. Uncertainties on experimental data represent statistical and systematic uncertainties added in quadrature. Here, the uncertainties are smaller than the symbol size."
"Variation of Tkin with <β> for different energies and centralities. The centrality increases from left to right for a given energy. The data points other than BES energies are taken from Refs. [43,66]. Uncertainties represent systematic uncertainties."
"Variation of Tkin with <β> for different energies and centralities. The centrality increases from left to right for a given energy. The data points other than BES energies are taken from Refs. [43,66]. Uncertainties represent systematic uncertainties."
"Variation of Tkin with <β> for different energies and centralities. The centrality increases from left to right for a given energy. The data points other than BES energies are taken from Refs. [43,66]. Uncertainties represent systematic uncertainties."
"Variation of Tkin with <β> for different energies and centralities. The centrality increases from left to right for a given energy. The data points other than BES energies are taken from Refs. [43,66]. Uncertainties represent systematic uncertainties."
"Variation of Tkin with <β> for different energies and centralities. The centrality increases from left to right for a given energy. The data points other than BES energies are taken from Refs. [43,66]. Uncertainties represent systematic uncertainties."
" (a) Energy dependence of kinetic and chemical freezeout temperatures for central heavy-ion collisions. The curves represent various theoretical predictions [81,82]. (b) Energy dependence of average transverse radial flow velocity for central heavy-ion collisions. The data points other than BES energies are taken from Refs. [43,53–64,66] and references therein. The BES data points are for 0–5% central collisions, AGS energies are mostly for 0–5%, SPS energies are for mostly 0–7%, and top RHIC and LHC energies are for 0–5% central collisions. Uncertainties represent systematic uncertainties."
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.