Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13 TeV $pp$ collision data with two top quarks and missing transverse momentum in the final state

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 503, 2023.
Inspire Record 2180393 DOI 10.17182/hepdata.129623

This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a $b$-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in $pp$ collisions at the LHC, using 139 fb$^{-\text{1}}$ of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the Standard Model in association with a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30$^{+\text{0.13}}_{-\text{0.09}}$) is observed (expected) at 95% confidence level.

40 data tables

Post-fit signal region yields for the tt0L-high and the tt0L-low analyses. The bottom panel shows the statistical significance of the difference between the SM prediction and the observed data in each region. '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

Representative fit distribution in the signal region for the tt1L analysis: each bin of such distribution corresponds to a single SR included in the fit. 'Other' includes contributions from $t\bar{t}W$, $tZ$, $tWZ$ and $t\bar{t}$ (semileptonic) processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

Representative fit distribution in the same flavour leptons signal region for the tt2L analysis: each bin of such distribution, starting from the red arrow, corresponds to a single SR included in the fit. 'FNP' includes the contribution from fake/non-prompt lepton background arising from jets (mainly $\pi/K$, heavy-flavour hadron decays and photon conversion) misidentified as leptons, estimated in a purely data-driven way. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

More…

Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$-boson mass in ${\sqrt{s}=13\,}$TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 031, 2023.
Inspire Record 2157951 DOI 10.17182/hepdata.134068

A search for the electroweak production of pairs of charged sleptons or charginos decaying into two-lepton final states with missing transverse momentum is presented. Two simplified models of $R$-parity-conserving supersymmetry are considered: direct pair-production of sleptons ($\tilde{\ell}\tilde{\ell}$), with each decaying into a charged lepton and a $\tilde{\chi}_1^0$ neutralino, and direct pair-production of the lightest charginos $(\tilde{\chi}_1^\pm\tilde{\chi}_1^\mp)$, with each decaying into a $W$-boson and a $\tilde{\chi}_1^0$. The lightest neutralino ($\tilde{\chi}_1^0$) is assumed to be the lightest supersymmetric particle (LSP). The analyses target the experimentally challenging mass regions where $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and $m(\tilde{\chi}_1^\pm)-m(\tilde{\chi}_1^0)$ are close to the $W$-boson mass (`moderately compressed' regions). The search uses 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider. No significant excesses over the expected background are observed. Exclusion limits on the simplified models under study are reported in the ($\tilde{\ell},\tilde{\chi}_1^0$) and ($\tilde{\chi}_1^\pm,\tilde{\chi}_1^0$) mass planes at 95% confidence level (CL). Sleptons with masses up to 150 GeV are excluded at 95% CL for the case of a mass-splitting between sleptons and the LSP of 50 GeV. Chargino masses up to 140 GeV are excluded at 95% CL for the case of a mass-splitting between the chargino and the LSP down to about 100 GeV.

176 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <b>Title: </b><em>Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$ boson mass in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector</em> <b>Paper website:</b> <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-02/">SUSY-2019-02</a> <b>Exclusion contours</b> <ul><li><b>Sleptons:</b> <a href=?table=excl_comb_obs_nominal>Combined Observed Nominal</a> <a href=?table=excl_comb_obs_up>Combined Observed Up</a> <a href=?table=excl_comb_obs_down>Combined Observed Down</a> <a href=?table=excl_comb_exp_nominal>Combined Expected Nominal</a> <a href=?table=excl_comb_exp_up>Combined Expected Up</a> <a href=?table=excl_comb_exp_down>Combined Expected Down</a> <a href=?table=excl_comb_obs_nominal_dM>Combined Observed Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_up_dM>Combined Observed Up $(\Delta m)$</a> <a href=?table=excl_comb_obs_down_dM>Combined Observed Down $(\Delta m)$</a> <a href=?table=excl_comb_exp_nominal_dM>Combined Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_exp_up_dM>Combined Expected Up $(\Delta m)$</a> <a href=?table=excl_comb_exp_down_dM>Combined Expected Down $(\Delta m)$</a> <a href=?table=excl_ee_obs_nominal>$\tilde{e}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_ee_exp_nominal>$\tilde{e}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_eLeL_obs_nominal>$\tilde{e}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_eLeL_exp_nominal>$\tilde{e}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_eReR_obs_nominal>$\tilde{e}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_eReR_exp_nominal>$\tilde{e}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_ee_obs_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_ee_exp_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_obs_nominal_dM>$\tilde{e}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_exp_nominal_dM>$\tilde{e}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_obs_nominal_dM>$\tilde{e}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_exp_nominal_dM>$\tilde{e}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mm_obs_nominal>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_mm_exp_nominal>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_mLmL_obs_nominal>$\tilde{\mu}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_mLmL_exp_nominal>$\tilde{\mu}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_mRmR_obs_nominal>$\tilde{\mu}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_mRmR_exp_nominal>$\tilde{\mu}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_mm_obs_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mm_exp_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_obs_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_exp_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_obs_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_exp_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_nominal_SR0j>Combined Observed Nominal SR-0j</a> <a href=?table=excl_comb_exp_nominal_SR0j>Combined Expected Nominal SR-0j</a> <a href=?table=excl_comb_obs_nominal_SR1j>Combined Observed Nominal SR-1j</a> <a href=?table=excl_comb_exp_nominal_SR1j>Combined Expected Nominal SR-1j</a> <li><b>Charginos:</b> <a href=?table=excl_c1c1_obs_nominal>Observed Nominal</a> <a href=?table=excl_c1c1_obs_up>Observed Up</a> <a href=?table=excl_c1c1_obs_down>Observed Down</a> <a href=?table=excl_c1c1_exp_nominal>Expected Nominal</a> <a href=?table=excl_c1c1_exp_nominal>Expected Up</a> <a href=?table=excl_c1c1_exp_nominal>Expected Down</a> <a href=?table=excl_c1c1_obs_nominal_dM>Observed Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_up_dM>Observed Up $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_down_dM>Observed Down $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Up $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Down $(\Delta m)$</a> </ul> <b>Upper Limits</b> <ul><li><b>Sleptons:</b> <a href=?table=UL_slep>ULs</a> <li><b>Charginos:</b> <a href=?table=UL_c1c1>ULs</a> </ul> <b>Pull Plots</b> <ul><li><b>Sleptons:</b> <a href=?table=pullplot_slep>SRs summary plot</a> <li><b>Charginos:</b> <a href=?table=pullplot_c1c1>SRs summary plot</a> </ul> <b>Cutflows</b> <ul><li><b>Sleptons:</b> <a href=?table=Cutflow_slep_SR0j>Towards SR-0J</a> <a href=?table=Cutflow_slep_SR1j>Towards SR-1J</a> <li><b>Charginos:</b> <a href=?table=Cutflow_SRs>Towards SRs</a> </ul> <b>Acceptance and Efficiencies</b> <ul><li><b>Sleptons:</b> <a href=?table=Acceptance_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_125>SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_125_130>SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_125>SR-1j $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_125_130>SR-1j $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <li><b>Charginos:</b> <a href=?table=Acceptance_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Efficiency</a></ul> <b>Truth Code snippets</b>, <b>SLHA</b> and <b>machine learning</b> files are available under "Resources" (purple button on the left)

The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.

The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.

More…

Search for new phenomena in final states with photons, jets and missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 021, 2023.
Inspire Record 2094882 DOI 10.17182/hepdata.115570

A search for new phenomena has been performed in final states with at least one isolated high-momentum photon, jets and missing transverse momentum in proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The data, collected by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 $fb^{-1}$. The experimental results are interpreted in a supersymmetric model in which pair-produced gluinos decay into neutralinos, which in turn decay into a gravitino, at least one photon, and jets. No significant deviations from the predictions of the Standard Model are observed. Upper limits are set on the visible cross section due to physics beyond the Standard Model, and lower limits are set on the masses of the gluinos and neutralinos, all at 95% confidence level. Visible cross sections greater than 0.022 fb are excluded and pair-produced gluinos with masses up to 2200 GeV are excluded for most of the NLSP masses investigated.

33 data tables

The observed and expected (post-fit) yields in the control and validation regions. The lower panel shows the difference in standard deviations between the observed and expected yields, considering both the systematic and statistical uncertainties on the background expectation.

Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.

Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.

More…

Search for heavy, long-lived, charged particles with large ionisation energy loss in $pp$ collisions at $\sqrt{s} = 13~\text{TeV}$ using the ATLAS experiment and the full Run 2 dataset

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 2306 (2023) 158, 2023.
Inspire Record 2080541 DOI 10.17182/hepdata.127994

This paper presents a search for hypothetical massive, charged, long-lived particles with the ATLAS detector at the LHC using an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV. These particles are expected to move significantly slower than the speed of light and should be identifiable by their high transverse momenta and anomalously large specific ionisation losses, ${\mathrm{d}}E/\mathrm{d}x$. Trajectories reconstructed solely by the inner tracking system and a ${\mathrm{d}}E/\mathrm{d}x$ measurement in the pixel detector layers provide sensitivity to particles with lifetimes down to ${\cal O}(1)$$\text{ns}$ with a mass, measured using the Bethe--Bloch relation, ranging from 100 GeV to 3 TeV. Interpretations for pair-production of $R$-hadrons, charginos and staus in scenarios of supersymmetry compatible with these particles being long-lived are presented, with mass limits extending considerably beyond those from previous searches in broad ranges of lifetime.

112 data tables

This material aims to give people outside the ATLAS Collaboration the possibility to reinterpret the results from the search for heavy charged long-lived particles (CLLPs), using only particles from Monte Carlo event generators. The reinterpretation material is provided for signal regions SR-Inclusive_Low and SR-Inclusive_High. <ul display="inline-block"> <li>The "long" lifetime regime of mass windows is used.</li> <li>Users are guided to read Guide.pdf (available from "Resources" or "Download All" buttons) for how to use the provided materials for reinterpretation.</li> <li>The pseudo-code snippet snippet.cxx also illustrates a sketch of possible implementation.</li> </ul> <b>Signal Region (Discovery) mass distribution</b> <ul> <li><a href="?table=SR-Inclusive_Low%20mass%20distribution">SR-Inclusive_Low mass distribution</a></li> <li><a href="?table=SR-Inclusive_High%20mass%20distribution">SR-Inclusive_High mass distribution</a></li> </ul> <b>Signal Region (Discovery) $p_\text{T}, \eta, dE/dx$ distribution</b> <ul> <li><a href="?table=SR-Inclusive_Low%20pT%20distribution">SR-Inclusive_Low pT distribution</a></li> <li><a href="?table=SR-Inclusive_High%20pT%20distribution">SR-Inclusive_High pT distribution</a></li> <li><a href="?table=SR-Inclusive_Low%20$eta$%20distribution">SR-Inclusive_Low $\eta$ distribution</a></li> <li><a href="?table=SR-Inclusive_High%20$eta$%20distribution">SR-Inclusive_High $\eta$ distribution</a></li> <li><a href="?table=SR-Inclusive_Low%20dE/dx%20distribution">SR-Inclusive_Low dE/dx distribution</a></li> <li><a href="?table=SR-Inclusive_High%20dE/dx%20distribution">SR-Inclusive_High dE/dx distribution</a></li> </ul> <b>Signal Region (Limit Setting) mass distribution</b> <ul> <li><a href="?table=SR-Trk-IBL0_Low%20mass%20distribution">SR-Trk-IBL0_Low mass distribution</a></li> <li><a href="?table=SR-Mu-IBL0_Low%20mass%20distribution">SR-Mu-IBL0_Low mass distribution</a></li> <li><a href="?table=SR-Trk-IBL0_High%20mass%20distribution">SR-Trk-IBL0_High mass distribution</a></li> <li><a href="?table=SR-Mu-IBL0_High%20mass%20distribution">SR-Mu-IBL0_High mass distribution</a></li> <li><a href="?table=SR-Trk-IBL1%20mass%20distribution">SR-Trk-IBL1 mass distribution</a></li> <li><a href="?table=SR-Mu-IBL1%20mass%20distribution">SR-Mu-IBL1 mass distribution</a></li> </ul> <b>Signal Region (Limit Setting) $p_\text{T}$ distribution</b> <ul> <li><a href="?table=SR-Trk-IBL0_Low%20pT%20distribution">SR-Trk-IBL0_Low pT distribution</a></li> <li><a href="?table=SR-Mu-IBL0_Low%20pT%20distribution">SR-Mu-IBL0_Low pT distribution</a></li> <li><a href="?table=SR-Trk-IBL0_High%20pT%20distribution">SR-Trk-IBL0_High pT distribution</a></li> <li><a href="?table=SR-Mu-IBL0_High%20pT%20distribution">SR-Mu-IBL0_High pT distribution</a></li> <li><a href="?table=SR-Trk-IBL1%20pT%20distribution">SR-Trk-IBL1 pT distribution</a></li> <li><a href="?table=SR-Mu-IBL1%20pT%20distribution">SR-Mu-IBL1 pT distribution</a></li> </ul> <b>Signal Region (Limit Setting) $dE/dx$ distribution</b> <ul> <li><a href="?table=SR-Trk-IBL0_Low%20dE/dx%20distribution">SR-Trk-IBL0_Low dE/dx distribution</a></li> <li><a href="?table=SR-Mu-IBL0_Low%20dE/dx%20distribution">SR-Mu-IBL0_Low dE/dx distribution</a></li> <li><a href="?table=SR-Trk-IBL0_High%20dE/dx%20distribution">SR-Trk-IBL0_High dE/dx distribution</a></li> <li><a href="?table=SR-Mu-IBL0_High%20dE/dx%20distribution">SR-Mu-IBL0_High dE/dx distribution</a></li> <li><a href="?table=SR-Trk-IBL1%20dE/dx%20distribution">SR-Trk-IBL1 dE/dx distribution</a></li> <li><a href="?table=SR-Mu-IBL1%20dE/dx%20distribution">SR-Mu-IBL1 dE/dx distribution</a></li> </ul> <b>Discovery Signal Regions $p_{0}$ values</b> <ul> <li><a href="?table=p0-values%20and%20model-independent%20limits,%20short%20regime">p0-values and model-independent limits, short regime</a></li> <li><a href="?table=p0-values%20and%20model-independent%20limits,%20long%20regime">p0-values and model-independent limits, long regime</a></li> </ul> <b>Validation Region plots</b> <ul> <li><a href="?table=VR-LowPt-Inclusive_High%20mass%20distribution">VR-LowPt-Inclusive_High mass distribution</a></li> <li><a href="?table=VR-HiEta-Inclusive%20mass%20distribution">VR-HiEta-Inclusive mass distribution</a></li> </ul> <ul> <li><a href="?table=VR-LowPt-Trk-IBL0_Low%20mass%20distribution">VR-LowPt-Trk-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-LowPt-Mu-IBL0_Low%20mass%20distribution">VR-LowPt-Mu-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-LowPt-Trk-IBL0_High%20mass%20distribution">VR-LowPt-Trk-IBL0_High mass distribution</a></li> <li><a href="?table=VR-LowPt-Mu-IBL0_High%20mass%20distribution">VR-LowPt-Mu-IBL0_High mass distribution</a></li> <li><a href="?table=VR-LowPt-Trk-IBL1%20mass%20distribution">VR-LowPt-Trk-IBL1 mass distribution</a></li> <li><a href="?table=VR-LowPt-Mu-IBL1%20mass%20distribution">VR-LowPt-Mu-IBL1 mass distribution</a></li> </ul> <ul> <li><a href="?table=VR-HiEta-Trk-IBL0_Low%20mass%20distribution">VR-HiEta-Trk-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-HiEta-Mu-IBL0_Low%20mass%20distribution">VR-HiEta-Mu-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-HiEta-Trk-IBL0_High%20mass%20distribution">VR-HiEta-Trk-IBL0_High mass distribution</a></li> <li><a href="?table=VR-HiEta-Mu-IBL0_High%20mass%20distribution">VR-HiEta-Mu-IBL0_High mass distribution</a></li> <li><a href="?table=VR-HiEta-Trk-IBL1%20mass%20distribution">VR-HiEta-Trk-IBL1 mass distribution</a></li> <li><a href="?table=VR-HiEta-Mu-IBL1%20mass%20distribution">VR-HiEta-Mu-IBL1 mass distribution</a></li> </ul> <b>Mass vs. Lifetime limit plots</b> <ul> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20Expected">Mass Limit vs. Lifetime, R-hadron, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20Observed">Mass Limit vs. Lifetime, R-hadron, Observed</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20compressed,%20Expected">Mass Limit vs. Lifetime, R-hadron, compressed, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20compressed,%20Observed">Mass Limit vs. Lifetime, R-hadron, compressed, Observed</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Chargino,%20Expected">Mass Limit vs. Lifetime, Chargino, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Chargino,%20Observed">Mass Limit vs. Lifetime, Chargino, Observed</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Stau,%20Expected">Mass Limit vs. Lifetime, Stau, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Stau,%20Observed">Mass Limit vs. Lifetime, Stau, Observed</a></li> </ul> <b>Cross-section limit plots</b> <ul> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%201ns">Cross Section Limit, R-hadron 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%203ns">Cross Section Limit, R-hadron 3ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%2010ns">Cross Section Limit, R-hadron 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%2030ns">Cross Section Limit, R-hadron 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Stable">Cross Section Limit, R-hadron Stable</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%201ns">Cross Section Limit, R-hadron Compressed 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%203ns">Cross Section Limit, R-hadron Compressed 3ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%2010ns">Cross Section Limit, R-hadron Compressed 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%2030ns">Cross Section Limit, R-hadron Compressed 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%201ns">Cross Section Limit, Chargino 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%204ns">Cross Section Limit, Chargino 4ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%2010ns">Cross Section Limit, Chargino 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%2030ns">Cross Section Limit, Chargino 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%20Stable">Cross Section Limit, Chargino Stable</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%201ns">Cross Section Limit, Stau 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%203ns">Cross Section Limit, Stau 3ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%2010ns">Cross Section Limit, Stau 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%2030ns">Cross Section Limit, Stau 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%20Stable">Cross Section Limit, Stau Stable</a></li> </ul> <b>Signal Region events projected to other kinematic variables</b> <ul> <li><a href="?table=SR-Inclusive_Low%20MET">SR-Inclusive_Low MET</a></li> <li><a href="?table=SR-Inclusive_High%20MET">SR-Inclusive_High MET</a></li> <li><a href="?table=SR-Inclusive_Low%20deltaPhi(MET,%20Track)">SR-Inclusive_Low deltaPhi(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_High%20deltaPhi(MET,%20Track)">SR-Inclusive_High deltaPhi(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_Low%20mT(MET,%20Track)">SR-Inclusive_Low mT(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_High%20mT(MET,%20Track)">SR-Inclusive_High mT(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_Low%20Leading%20jet%20pT">SR-Inclusive_Low Leading jet pT</a></li> <li><a href="?table=SR-Inclusive_High%20Leading%20jet%20pT">SR-Inclusive_High Leading jet pT</a></li> <li><a href="?table=SR-Inclusive_Low%20deltaPhi(Leading%20jet,%20Track)">SR-Inclusive_Low deltaPhi(Leading jet, Track)</a></li> <li><a href="?table=SR-Inclusive_High%20deltaPhi(Leading%20jet,%20Track)">SR-Inclusive_High deltaPhi(Leading jet, Track)</a></li> <li><a href="?table=SR-Inclusive_Low%20deltaPhi(MET,%20Leading%20jet)">SR-Inclusive_Low deltaPhi(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_High%20deltaPhi(MET,%20Leading%20jet)">SR-Inclusive_High deltaPhi(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_Low%20mT(MET,%20Leading%20jet)">SR-Inclusive_Low mT(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_High%20mT(MET,%20Leading%20jet)">SR-Inclusive_High mT(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_Low%20Effective%20mass">SR-Inclusive_Low Effective mass</a></li> <li><a href="?table=SR-Inclusive_High%20Effective%20mass">SR-Inclusive_High Effective mass</a></li> </ul> <b>Acceptance and efficiency values for reinterpretation</b> <ul> <li><a href="?table=Muon%20Reconstruction%20Efficiency%20distribution">Muon Reconstruction Efficiency distribution</a></li> <li><a href="?table=Muon%20Reconstruction%20Efficiency,%20R-hadron%20distribution">Muon Reconstruction Efficiency, R-hadron distribution</a></li> <li><a href="?table=Trigger%20Efficiency%20distribution">Trigger Efficiency distribution</a></li> <li><a href="?table=Event%20Selection%20Efficiency%20distribution">Event Selection Efficiency distribution</a></li> <li><a href="?table=Track%20Selection%20Efficiency%20distribution">Track Selection Efficiency distribution</a></li> <li><a href="?table=Mass%20Window%20Efficiency">Mass Window Efficiency</a></li> </ul> <b>Acceptance and efficiency tables for signal samples</b> <ul> <li><a href="?table=Acceptance,%20R-hadron">Acceptance, R-hadron</a></li> <li><a href="?table=Acceptance,%20R-hadron,%20compressed">Acceptance, R-hadron, compressed</a></li> <li><a href="?table=Acceptance,%20Chargino">Acceptance, Chargino</a></li> <li><a href="?table=Acceptance,%20Stau">Acceptance, Stau</a></li> </ul> <ul> <li><a href="?table=Event-level%20efficiency,%20R-hadron">Event-level efficiency, R-hadron</a></li> <li><a href="?table=Event-level%20efficiency,%20R-hadron,%20compressed">Event-level efficiency, R-hadron, compressed</a></li> <li><a href="?table=Event-level%20efficiency,%20Chargino">Event-level efficiency, Chargino</a></li> <li><a href="?table=Event-level%20efficiency,%20Stau">Event-level efficiency, Stau</a></li> </ul> <ul> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20R-hadron">Efficiency, SR-Inclusve_High, R-hadron</a></li> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20R-hadron,%20compressed">Efficiency, SR-Inclusve_High, R-hadron, compressed</a></li> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20Chargino">Efficiency, SR-Inclusve_High, Chargino</a></li> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20Stau">Efficiency, SR-Inclusve_High, Stau</a></li> </ul> <ul> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20R-hadron">Efficiency, SR-Inclusive_Low, R-hadron</a></li> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20R-hadron,%20compressed">Efficiency, SR-Inclusive_Low, R-hadron, compressed</a></li> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20Chargino">Efficiency, SR-Inclusive_Low, Chargino</a></li> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20Stau">Efficiency, SR-Inclusive_Low, Stau</a></li> </ul> <b>Cut flow for signal samples</b> <ul> <li><a href="?table=Cut%20Flow,%20R-hadron">Cut Flow, R-hadron</a></li> <li><a href="?table=Cut%20Flow,%20R-hadron,%20compressed">Cut Flow, R-hadron, compressed</a></li> <li><a href="?table=Cut%20Flow,%20Chargino">Cut Flow, Chargino</a></li> <li><a href="?table=Cut%20Flow,%20Stau">Cut Flow, Stau</a></li> </ul>

Comparison of the observed and expected VAR distributionsin VR-LowPt-Inclusive_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.

Comparison of the observed and expected VAR distributionsin VR-HiEta-Inclusive. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.

More…

Search for invisible Higgs-boson decays in events with vector-boson fusion signatures using 139 $\text{fb}^{-1}$ of proton-proton data recorded by the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 08 (2022) 104, 2022.
Inspire Record 2033393 DOI 10.17182/hepdata.127760

A direct search for Higgs bosons produced via vector-boson fusion and subsequently decaying into invisible particles is reported. The analysis uses 139 $\text{fb}^{-1}$ of $pp$ collision data at a centre-of-mass energy of $\sqrt{s}$=13 $\text{TeV}$ recorded by the ATLAS detector at the LHC. The observed numbers of events are found to be in agreement with the background expectation from Standard Model processes. For a scalar Higgs boson with a mass of 125 $\text{GeV}$ and a Standard Model production cross section, an observed upper limit of $0.145$ is placed on the branching fraction of its decay into invisible particles at 95% confidence level, with an expected limit of $0.103$. These results are interpreted in the context of models where the Higgs boson acts as a portal to dark matter, and limits are set on the scattering cross section of weakly interacting massive particles and nucleons. Invisible decays of additional scalar bosons with masses from 50 $\text{GeV}$ to 2 $\text{TeV}$ are also studied, and the derived upper limits on the cross section times branching fraction decrease with increasing mass from 1.0 $\text{pb}$ for a scalar boson mass of 50 $\text{GeV}$ to 0.1 $\text{pb}$ at a mass of 2 $\text{TeV}$.

1 data table

Yields after each selection criterion for a signal sample of an invisibly decaying Higgs boson produced in VBF and ggF for 139 $fb^{-1}$ of data. The lines 'Timing of j1/j2' are referring to requirements that are part of the jet cleaning, and which ensure that the timing of the two leading jets is compatible with the bunch crossing. The last sixteen rows show the yield in each SR bin and the efficiency with respect to the inclusive signal region.


Search for single production of a vector-like $T$ quark decaying into a Higgs boson and top quark with fully hadronic final states using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 105 (2022) 092012, 2022.
Inspire Record 2013051 DOI 10.17182/hepdata.131522

A search is made for a vector-like $T$ quark decaying into a Higgs boson and a top quark in 13 TeV proton-proton collisions using the ATLAS detector at the Large Hadron Collider with a data sample corresponding to an integrated luminosity of 139 fb$^{-1}$. The Higgs-boson and top-quark candidates are identified in the all-hadronic decay mode, where $H\to b\bar{b}$ and $t\to b W \to b q \bar{q}^\prime$ are reconstructed as large-radius jets. The candidate Higgs boson, top quark, and associated B-hadrons are identified using tagging algorithms. No significant excess is observed above the background, so limits are set on the production cross-section of a singlet $T$ quark at 95% confidence level, depending on the mass, $m_T$, and coupling, $\kappa_T$, of the vector-like $T$ quark to Standard Model particles. In the considered mass range between 1.0 and 2.3 TeV, the upper limit on the allowed coupling values increases with $m_T$ from a minimum value of 0.35 for 1.07 < $m_T$ < 1.4 TeV to 1.6 for $m_T$ = 2.3 TeV.

8 data tables

Dijet invariant mass distribution for the $SR$ showing the results of the model when fitted to the data. A $T$-quark hypothesis with $m_{T} = 1.6$ TeV and $\kappa_{T} = 0.5$ is used in the fit.

Dijet invariant mass distribution for the $ttNR$ showing the results of the model when fitted to the data. A $T$-quark hypothesis with $m_{T} = 1.6$ TeV and $\kappa_{T} = 0.5$ is used in the fit.

Observed and expected 95% CL upper limits on the single $T$-quark coupling $\kappa_{T}$ as a function of $m_{T}$ are shown.

More…

A search for an unexpected asymmetry in the production of $e^+ \mu^-$ and $e^- \mu^+$ pairs in proton-proton collisions recorded by the ATLAS detector at $\sqrt s = 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Lett.B 830 (2022) 137106, 2022.
Inspire Record 1990948 DOI 10.17182/hepdata.115579

This search, a type not previously performed at ATLAS, uses a comparison of the production cross sections for $e^+ \mu^-$ and $e^- \mu^+$ pairs to constrain physics processes beyond the Standard Model. It uses $139 \text{fb}^{-1}$ of proton$-$proton collision data recorded at $\sqrt{s} = 13$ TeV at the LHC. Targeting sources of new physics which prefer final states containing $e^{+}\mu^{-}$ to $e^{-}\mu^{+}$, the search contains two broad signal regions which are used to provide model-independent constraints on the ratio of cross sections at the 2% level. The search also has two special selections targeting supersymmetric models and leptoquark signatures. Observations using one of these selections are able to exclude, at 95% confidence level, singly produced smuons with masses up to 640 GeV in a model in which the only other light sparticle is a neutralino when the $R$-parity-violating coupling $\lambda'_{231}$ is close to unity. Observations using the other selection exclude scalar leptoquarks with masses below 1880 GeV when $g_{\text{1R}}^{eu}=g_{\text{1R}}^{\mu c}=1$, at 95% confidence level. The limit on the coupling reduces to $g_{\text{1R}}^{eu}=g_{\text{1R}}^{\mu c}=0.46$ for a mass of 1420 GeV.

26 data tables

Observed yields, and (post-fit) expected yields for the data-driven SM estimates. Yields are shown for the benchmark RPV-supersymmetry signal points in SR-RPV and the leptoquark signal points in SR-LQ after a fit excluding the $e^{+}\mu^{-}$ signal region and setting $\mu_{\text{sig}}=1$. Small weights correcting for muon charge biases affect all rows except that containing the fake-lepton estimate. These weights, $w_i$, cause non-integer yields. The uncertainties, $\sqrt{\sum_i w_i^2}$, are given for data to support the choice made to model the yields with a Poisson distribution.

The observed exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=1.0$.

The expected exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=1.0$.

More…

Search for dark matter produced in association with a Standard Model Higgs boson decaying into $b$-quarks using the full Run 2 dataset from the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 11 (2021) 209, 2021.
Inspire Record 1913723 DOI 10.17182/hepdata.104702

The production of dark matter in association with Higgs bosons is predicted in several extensions of the Standard Model. An exploration of such scenarios is presented, considering final states with missing transverse momentum and $b$-tagged jets consistent with a Higgs boson. The analysis uses proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by the ATLAS experiment at the LHC during Run 2, amounting to an integrated luminosity of 139 fb$^{-1}$. The analysis, when compared with previous searches, benefits from a larger dataset, but also has further improvements providing sensitivity to a wider spectrum of signal scenarios. These improvements include both an optimised event selection and advances in the object identification, such as the use of the likelihood-based significance of the missing transverse momentum and variable-radius track-jets. No significant deviation from Standard Model expectations is observed. Limits are set, at 95% confidence level, in two benchmark models with two Higgs doublets extended by either a heavy vector boson $Z'$ or a pseudoscalar singlet $a$ and which both provide a dark matter candidate $\chi$. In the case of the two-Higgs-doublet model with an additional vector boson $Z'$, the observed limits extend up to a $Z'$ mass of 3 TeV for a mass of 100 GeV for the dark matter candidate. The two-Higgs-doublet model with a dark matter particle mass of 10 GeV and an additional pseudoscalar $a$ is excluded for masses of the $a$ up to 520 GeV and 240 GeV for $\tan \beta = 1$ and $\tan \beta = 10$ respectively. Limits on the visible cross-sections are set and range from 0.05 fb to 3.26 fb, depending on the missing transverse momentum and $b$-quark jet multiplicity requirements.

73 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=LimitContour_ZP2HDM_obs">Observed 95% CL exclusion limit for the Z'-2HDM model</a> <li><a href="?table=LimitContour_ZP2HDM_exp">Expected 95% CL exclusion limit for the Z'-2HDM model</a> <li><a href="?table=LimitContour_ZP2HDM_exp_1s">Expected +- 1sigma 95% CL exclusion limit for the Z'-2HDM model</a> <li><a href="?table=LimitContour_ZP2HDM_exp_2s">Expected +- 2sigma 95% CL exclusion limit for the Z'-2HDM model</a> <li><a href="?table=LimitContour_2HDMa_tb1_sp0p35_obs">Observed 95% CL exclusion limit for ggF production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb1_sp0p35_exp">Expected 95% CL exclusion limit for ggF production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb1_sp0p35_exp_1s">Expected +- 1 sigma 95% CL exclusion limit for ggF production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb1_sp0p35_exp_2s">Expected +- 2 sigma 95% CL exclusion limit for ggF production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb10_sp0p35_obs">Observed 95% CL exclusion limit for bbA production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb10_sp0p35_exp">Expected 95% CL exclusion limit for bbA production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb10_sp0p35_exp_1s">Expected +- 1 sigma 95% CL exclusion limit for bbA production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb10_sp0p35_exp_2s">Expected +- 2 sigma 95% CL exclusion limit for bbA production in the 2HDM+a model</a> <li><a href="?table=LimitContour_ZP2HDM_2018CONF_obs">Observed 95% CL exclusion limit for the Z'-2HDM model with the benchmark used in arXiv:1707.01302.</a> <li><a href="?table=LimitContour_ZP2HDM_2018CONF_exp">Expected 95% CL exclusion limit for the Z'-2HDM model with the benchmark used in arXiv:1707.01302.</a> <li><a href="?table=LimitContour_ZP2HDM_2018CONF_exp_1s">Expected +- 1 sigma 95% CL exclusion limit for the Z'-2HDM model with the benchmark used in arXiv:1707.01302.</a> <li><a href="?table=LimitContour_ZP2HDM_2018CONF_exp_2s">Expected +- 2 sigma 95% CL exclusion limit for the Z'-2HDM model with the benchmark used in arXiv:1707.01302.</a> </ul> <b>Upper limits on cross-sections:</b> <ul> <li><a href="?table=Limits_ZP2HDM">95% CL upper limit on the cross-section for the Z'-2HDM model</a> <li><a href="?table=Limits_2HDMa_tb1_sp0p35">95% CL upper limit on the ggF cross-section in the 2HDM+a model</a> <li><a href="?table=Limits_2HDMa_tb10_sp0p35">95% CL upper limit on the bbA cross-section in the 2HDM+a model</a> <li><a href="?table=MIL">95% CL upper limit on the visible cross-section</a> </ul> <b>Theoretical cross-sections:</b> <ul> <li><a href="?table=CrossSections_ZP2HDM">Cross-section for the Z'-2HDM model</a> <li><a href="?table=CrossSections_2HDMa_tb1_sp0p35">Cross-section for ggF production in the 2HDM+a model</a> <li><a href="?table=CrossSections_2HDMa_tb10_sp0p35">Cross-section for bbA production in the 2HDM+a model</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SR_post_plot_2b_150_200">Higgs candidate invariant mass in the region with 2 b-jets and missing energy between 150-200 GeV</a> <li><a href="?table=SR_post_plot_2b_200_350">Higgs candidate invariant mass in the region with 2 b-jets and missing energy between 200-350 GeV</a> <li><a href="?table=SR_post_plot_2b_350_500">Higgs candidate invariant mass in the region with 2 b-jets and missing energy between 350-500 GeV</a> <li><a href="?table=SR_post_plot_2b_500_750">Higgs candidate invariant mass in the region with 2 b-jets and missing energy between 500-750 GeV</a> <li><a href="?table=SR_post_plot_2b_750">Higgs candidate invariant mass in the region with 2 b-jets and missing energy higher than 750 GeV</a> <li><a href="?table=SR_post_plot_3b_150_200">Higgs candidate invariant mass in the region with at least 3 b-jets and missing energy between 150-200 GeV</a> <li><a href="?table=SR_post_plot_3b_200_350">Higgs candidate invariant mass in the region with at least 3 b-jets and missing energy between 200-350 GeV</a> <li><a href="?table=SR_post_plot_3b_350_500">Higgs candidate invariant mass in the region with at least 3 b-jets and missing energy between 350-500 GeV</a> <li><a href="?table=SR_post_plot_3b_500">Higgs candidate invariant mass in the region with at least 3 b-jets and missing energy higher than 500 GeV</a> <li><a href="?table=MET_post_plot_0L2b">Missing energy in events with 0 leptons and 2 b-jets</a> <li><a href="?table=MET_post_plot_0L3b">Missing energy in events with 0 leptons and at least 3 b-jets</a> <li><a href="?table=CR_post_plot_CR1">Yields in the different missing energy bins and muon-charge of the 1-lepton control region</a> <li><a href="?table=CR_post_plot_CR2">Yields in the different METlepInv bins of the 2-lepton control region</a> </ul> <b>Cut flows:</b> The tables contain three columns, corresponding to the Z'-2HDM and 2HDM+a model assuming 100% ggF or bbA production respectively. <ul> <li><a href="?table=Resolved_150_200_2b">Signal region with 2 b-jets and missing energy between 150-200 GeV</a> <li><a href="?table=Resolved_200_350_2b">Signal region with 2 b-jets and missing energy between 200-350 GeV</a> <li><a href="?table=Resolved_350_500_2b">Signal region with 2 b-jets and missing energy between 350-500 GeV</a> <li><a href="?table=Merged_500_750_2w0b">Signal region with 2 b-jets and missing energy between 500-750 GeV</a> <li><a href="?table=Merged_750_2w0b">Signal region with 2 b-jets and missing energy higher than 750 GeV</a> <li><a href="?table=Resolved_150_200_3pb">Signal region with at least 3 b-jets and missing energy between 150-200 GeV</a> <li><a href="?table=Resolved_200_350_3pb">Signal region with at least 3 b-jets and missing energy between 200-350 GeV</a> <li><a href="?table=Resolved_350_500_3pb">Signal region with at least 3 b-jets and missing energy between 350-500 GeV</a> <li><a href="?table=Merged_2w1pb">Signal region with at least 3 b-jets and missing energy higher than 500 GeV</a> </ul> <b>Acceptance and efficiencies:</b> <ul> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_2_150_noHiggsWindowCut">2HDM+a model, bbA production, 2 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_2_200_noHiggsWindowCut">2HDM+a model, bbA production, 2 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_2_350_noHiggsWindowCut">2HDM+a model, bbA production, 2 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_2_500_noHiggsWindowCut">2HDM+a model, bbA production, 2 b-jets, MET=500-750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_2_750ptv_noHiggsWindowCut">2HDM+a model, bbA production, 2 b-jets, MET higher than 750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_3_150_noHiggsWindowCut">2HDM+a model, bbA production, at least 3 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_3_200_noHiggsWindowCut">2HDM+a model, bbA production, at least 3 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_3_350_noHiggsWindowCut">2HDM+a model, bbA production, at least 3 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_3_500ptv_noHiggsWindowCut">2HDM+a model, bbA production, at least 3 b-jets, MET higher than GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_2_150_noHiggsWindowCut">2HDM+a model, ggF production, 2 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_2_200_noHiggsWindowCut">2HDM+a model, ggF production, 2 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_2_350_noHiggsWindowCut">2HDM+a model, ggF production, 2 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_2_500_noHiggsWindowCut">2HDM+a model, ggF production, 2 b-jets, MET=500-750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_2_750ptv_noHiggsWindowCut">2HDM+a model, ggF production, 2 b-jets, MET higher than 750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_3_150_noHiggsWindowCut">2HDM+a model, ggF production, at least 3 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_3_200_noHiggsWindowCut">2HDM+a model, ggF production, at least 3 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_3_350_noHiggsWindowCut">2HDM+a model, ggF production, at least 3 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_3_500ptv_noHiggsWindowCut">2HDM+a model, ggF production, at least 3 b-jets, MET higher than 500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_2_150_noHiggsWindowCut">Z'-2HDM model, 2 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_2_200_noHiggsWindowCut">Z'-2HDM model, 2 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_2_350_noHiggsWindowCut">Z'-2HDM model, 2 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_2_500_noHiggsWindowCut">Z'-2HDM model, 2 b-jets, MET=500-750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_2_750ptv_noHiggsWindowCut">Z'-2HDM model, 2 b-jets, MET higher than 750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_3_150_noHiggsWindowCut">Z'-2HDM model, at least 3 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_3_200_noHiggsWindowCut">Z'-2HDM model, at least 3 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_3_350_noHiggsWindowCut">Z'-2HDM model, at least 3 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_3_500ptv_noHiggsWindowCut">Z'-2HDM model, at least 3 b-jets, MET higher than 500 GeV</a> </ul>

Observed 95% CL exclusion limit for the Zprime-2HDM model.

Expected 95% CL exclusion limit for the Zprime-2HDM model.

More…

Search for new phenomena in $pp$ collisions in final states with tau leptons, $b$-jets, and missing transverse momentum with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 104 (2021) 112005, 2021.
Inspire Record 1907601 DOI 10.17182/hepdata.105998

A search for new phenomena in final states with hadronically decaying tau leptons, $b$-jets, and missing transverse momentum is presented. The analyzed dataset comprises $pp$~collision data at a center-of-mass energy of $\sqrt s = 13$ TeV with an integrated luminosity of 139/fb, delivered by the Large Hadron Collider and recorded with the ATLAS detector from 2015 to 2018. The observed data are compatible with the expected Standard Model background. The results are interpreted in simplified models for two different scenarios. The first model is based on supersymmetry and considers pair production of top squarks, each of which decays into a $b$-quark, a neutrino and a tau slepton. Each tau slepton in turn decays into a tau lepton and a nearly massless gravitino. Within this model, top-squark masses up to 1.4 TeV can be excluded at the 95% confidence level over a wide range of tau-slepton masses. The second model considers pair production of leptoquarks with decays into third-generation leptons and quarks. Depending on the branching fraction into charged leptons, leptoquarks with masses up to around 1.25 TeV can be excluded at the 95% confidence level for the case of scalar leptoquarks and up to 1.8 TeV (1.5 TeV) for vector leptoquarks in a Yang--Mills (minimal-coupling) scenario. In addition, model-independent upper limits are set on the cross section of processes beyond the Standard Model.

89 data tables

Relative systematic uncertainties in the estimated number of background events in the signal regions. In the lower part of the table, a breakdown of the total uncertainty into different categories is given. For the multi-bin SR, the breakdown refers to the integral over all three $p_{\text{T}}(\tau)$ bins. As the individual uncertainties are correlated, they do not add in quadrature to equal the total background uncertainty.

Distributions of $m_{\text{T}2}(\tau_{1},\tau_{2})$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.

Distributions of $E_{\text{T}}^{\text{miss}}$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.

More…

Version 2
Search for chargino--neutralino pair production in final states with three leptons and missing transverse momentum in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 81 (2021) 1118, 2021.
Inspire Record 1866951 DOI 10.17182/hepdata.95751

A search for chargino$-$neutralino pair production in three-lepton final states with missing transverse momentum is presented. The study is based on a dataset of $\sqrt{s} = 13$ TeV $pp$ collisions recorded with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 139 fb$^{-1}$. No significant excess relative to the Standard Model predictions is found in data. The results are interpreted in simplified models of supersymmetry, and statistically combined with results from a previous ATLAS search for compressed spectra in two-lepton final states. Various scenarios for the production and decay of charginos ($\tilde\chi^\pm_1$) and neutralinos ($\tilde\chi^0_2$) are considered. For pure higgsino $\tilde\chi^\pm_1\tilde\chi^0_2$ pair-production scenarios, exclusion limits at 95% confidence level are set on $\tilde\chi^0_2$ masses up to 210 GeV. Limits are also set for pure wino $\tilde\chi^\pm_1\tilde\chi^0_2$ pair production, on $\tilde\chi^0_2$ masses up to 640 GeV for decays via on-shell $W$ and $Z$ bosons, up to 300 GeV for decays via off-shell $W$ and $Z$ bosons, and up to 190 GeV for decays via $W$ and Standard Model Higgs bosons.

264 data tables

This is the HEPData space for the ATLAS SUSY EWK three-lepton search. The full resolution figures can be found at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-09/ The full statistical likelihoods have been provided for this analysis. They can be downloaded by clicking on the purple 'Resources' button above and selecting the 'Common Resources' category. <b>Region yields:</b> <ul display="inline-block"> <li><a href="?table=Tab%2012%20Onshell%20WZ%20Signal%20Region%20Yields%20Table">Tab 12 Onshell WZ Signal Region Yields Table</a> <li><a href="?table=Tab%2013%20Onshell%20Wh%20Signal%20Region%20Yields%20Table">Tab 13 Onshell Wh Signal Region Yields Table</a> <li><a href="?table=Tab%2014%20Offshell%20low-$E_{T}^{miss}$%20Signal%20Region%20Yields%20Table">Tab 14 Offshell low-$E_{T}^{miss}$ Signal Region Yields Table</a> <li><a href="?table=Tab%2015%20Offshell%20high-$E_{T}^{miss}$%20Signal%20Region%20Yields%20Table">Tab 15 Offshell high-$E_{T}^{miss}$ Signal Region Yields Table</a> <li><a href="?table=Tab%2020%20RJR%20Signal%20Region%20Yields%20Table">Tab 20 RJR Signal Region Yields Table</a> <li><a href="?table=Fig%204%20Onshell%20Control%20and%20Validation%20Region%20Yields">Fig 4 Onshell Control and Validation Region Yields</a> <li><a href="?table=Fig%208%20Offshell%20Control%20and%20Validation%20Region%20Yields">Fig 8 Offshell Control and Validation Region Yields</a> <li><a href="?table=Fig%2010%20Onshell%20WZ%20Signal%20Region%20Yields">Fig 10 Onshell WZ Signal Region Yields</a> <li><a href="?table=Fig%2011%20Onshell%20Wh%20Signal%20Region%20Yields">Fig 11 Onshell Wh Signal Region Yields</a> <li><a href="?table=Fig%2012%20Offshell%20Signal%20Region%20Yields">Fig 12 Offshell Signal Region Yields</a> <li><a href="?table=Fig%2018%20RJR%20Control%20and%20Validation%20Region%20Yields">Fig 18 RJR Control and Validation Region Yields</a> </ul> <b>Exclusion contours:</b> <ul display="inline-block"> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs">Fig 16a WZ Exclusion: Wino-bino(+), Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs_Up">Fig 16a WZ Exclusion: Wino-bino(+), Obs_Up</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs_Down">Fig 16a WZ Exclusion: Wino-bino(+), Obs_Down</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp">Fig 16a WZ Exclusion: Wino-bino(+), Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp_Up">Fig 16a WZ Exclusion: Wino-bino(+), Exp_Up</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp_Down">Fig 16a WZ Exclusion: Wino-bino(+), Exp_Down</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20compressed_Obs">Fig 16a WZ Exclusion: Wino-bino(+), compressed_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20compressed_Exp">Fig 16a WZ Exclusion: Wino-bino(+), compressed_Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20offshell_Obs">Fig 16a WZ Exclusion: Wino-bino(+), offshell_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20offshell_Exp">Fig 16a WZ Exclusion: Wino-bino(+), offshell_Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20onshell_Obs">Fig 16a WZ Exclusion: Wino-bino(+), onshell_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20onshell_Exp">Fig 16a WZ Exclusion: Wino-bino(+), onshell_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs_Up">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs_Down">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp_Up">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp_Down">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20compressed_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20compressed_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20offshell_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20offshell_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20onshell_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), onshell_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20onshell_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), onshell_Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs_Up">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs_Down">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp_Up">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp_Down">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20compressed_Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20compressed_Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20offshell_Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20offshell_Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs_Up">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs_Down">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp_Up">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp_Down">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20compressed_Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20compressed_Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20offshell_Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20offshell_Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs">Fig 17 Wh Exclusion, Obs</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs_Up">Fig 17 Wh Exclusion, Obs_Up</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs_Down">Fig 17 Wh Exclusion, Obs_Down</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp">Fig 17 Wh Exclusion, Exp</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp_Up">Fig 17 Wh Exclusion, Exp_Up</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp_Down">Fig 17 Wh Exclusion, Exp_Down</a> </ul> <b>Upper limits:</b> <ul display="inline-block"> <li><a href="?table=AuxFig%208a%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8a WZ Excl. Upper Limit Obs. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208b%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8b WZ Excl. Upper Limit Exp. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208c%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8c WZ Excl. Upper Limit Obs. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208d%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8d WZ Excl. Upper Limit Exp. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208e%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(-)%20($\Delta%20m$)">AuxFig 8e WZ Excl. Upper Limit Obs. Wino-bino(-) ($\Delta m$)</a> <li><a href="?table=AuxFig%208f%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(-)%20($\Delta%20m$)">AuxFig 8f WZ Excl. Upper Limit Exp. Wino-bino(-) ($\Delta m$)</a> <li><a href="?table=AuxFig%208g%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Higgsino%20($\Delta%20m$)">AuxFig 8g WZ Excl. Upper Limit Obs. Higgsino ($\Delta m$)</a> <li><a href="?table=AuxFig%208h%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Higgsino%20($\Delta%20m$)">AuxFig 8h WZ Excl. Upper Limit Exp. Higgsino ($\Delta m$)</a> <li><a href="?table=AuxFig%209a%20Wh%20Excl.%20Upper%20Limit%20Obs.">AuxFig 9a Wh Excl. Upper Limit Obs.</a> <li><a href="?table=AuxFig%209b%20Wh%20Excl.%20Upper%20Limit%20Exp.">AuxFig 9b Wh Excl. Upper Limit Exp.</a> </ul> <b>Model-independent discovery fits:</b> <ul display="inline-block"> <li><a href="?table=Tab%2018%20Onshell%20Discovery%20Fit%20Table">Tab 18 Onshell Discovery Fit Table</a> <li><a href="?table=Tab%2019%20Offshell%20Discovery%20Fit%20Table">Tab 19 Offshell Discovery Fit Table</a> <li><a href="?table=Tab%2021%20RJR%20Discovery%20Fit%20Table">Tab 21 RJR Discovery Fit Table</a> </ul> <b>Kinematic distributions:</b> <ul display="inline-block"> <li><a href="?table=Fig%2013a%20SR$_{DFOS}^{Wh}$-1%20($\Delta%20R_{OS,%20near}$)">Fig 13a SR$_{DFOS}^{Wh}$-1 ($\Delta R_{OS, near}$)</a> <li><a href="?table=Fig%2013b%20SR$_{DFOS}^{Wh}$-2%20(3rd%20Lep.%20$p_{T}$)">Fig 13b SR$_{DFOS}^{Wh}$-2 (3rd Lep. $p_{T}$)</a> <li><a href="?table=Fig%2013c%20SR$_{0j}^{WZ}$%20($E_{T}^{miss}$)">Fig 13c SR$_{0j}^{WZ}$ ($E_{T}^{miss}$)</a> <li><a href="?table=Fig%2013d%20SR$_{0j}^{WZ}$%20($m_{T}$)">Fig 13d SR$_{0j}^{WZ}$ ($m_{T}$)</a> <li><a href="?table=Fig%2014a%20SR$^{offWZ}_{LowETmiss}$-0j%20($m_{T}^{minmll}$)">Fig 14a SR$^{offWZ}_{LowETmiss}$-0j ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014b%20SR$^{offWZ}_{LowETmiss}$-nj%20($m_{T}^{minmll}$)">Fig 14b SR$^{offWZ}_{LowETmiss}$-nj ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014c%20SR$^{offWZ}_{HighETmiss}$-0j%20($m_{T}^{minmll}$)">Fig 14c SR$^{offWZ}_{HighETmiss}$-0j ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014d%20SR$^{offWZ}_{HighETmiss}$-nj%20($p_T^l%20\div%20E_T^{miss}$)">Fig 14d SR$^{offWZ}_{HighETmiss}$-nj ($p_T^l \div E_T^{miss}$)</a> <li><a href="?table=Fig%2020a%20RJR%20SR3$\ell$-Low%20($p_{T}^{\ell%201}$)">Fig 20a RJR SR3$\ell$-Low ($p_{T}^{\ell 1}$)</a> <li><a href="?table=Fig%2020b%20RJR%20SR3$\ell$-Low%20($H_{3,1}^{PP}$)">Fig 20b RJR SR3$\ell$-Low ($H_{3,1}^{PP}$)</a> <li><a href="?table=Fig%2020c%20RJR%20SR3$\ell$-ISR%20($p_{T~ISR}^{CM}$)">Fig 20c RJR SR3$\ell$-ISR ($p_{T~ISR}^{CM}$)</a> <li><a href="?table=Fig%2020d%20RJR%20SR3$\ell$-ISR%20($R_{ISR}$)">Fig 20d RJR SR3$\ell$-ISR ($R_{ISR}$)</a> </ul> <b>Cutflows:</b> <ul display="inline-block"> <li><a href="?table=AuxTab%205%20Cutflow:%20Onshell%20WZ">AuxTab 5 Cutflow: Onshell WZ</a> <li><a href="?table=AuxTab%206%20Cutflow:%20Onshell%20Wh">AuxTab 6 Cutflow: Onshell Wh</a> <li><a href="?table=AuxTab%207%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(250,235)">AuxTab 7 Cutflow: Offshell Wino-bino(+) (250,235)</a> <li><a href="?table=AuxTab%208%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(125,85)">AuxTab 8 Cutflow: Offshell Wino-bino(+) (125,85)</a> <li><a href="?table=AuxTab%209%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(250,170)">AuxTab 9 Cutflow: Offshell Wino-bino(+) (250,170)</a> <li><a href="?table=AuxTab%2010%20Cutflow:%20Offshell%20Wino-bino(-)%20(250,235)">AuxTab 10 Cutflow: Offshell Wino-bino(-) (250,235)</a> <li><a href="?table=AuxTab%2011%20Cutflow:%20Offshell%20Wino-bino(-)%20(125,85)">AuxTab 11 Cutflow: Offshell Wino-bino(-) (125,85)</a> <li><a href="?table=AuxTab%2012%20Cutflow:%20Offshell%20Wino-bino(-)%20(250,170)">AuxTab 12 Cutflow: Offshell Wino-bino(-) (250,170)</a> <li><a href="?table=AuxTab%2013%20Cutflow:%20Offshell%20Higgsino%20(120,100)">AuxTab 13 Cutflow: Offshell Higgsino (120,100)</a> <li><a href="?table=AuxTab%2014%20Cutflow:%20Offshell%20Higgsino%20(100,40)">AuxTab 14 Cutflow: Offshell Higgsino (100,40)</a> <li><a href="?table=AuxTab%2015%20Cutflow:%20Offshell%20Higgsino%20(185,125)">AuxTab 15 Cutflow: Offshell Higgsino (185,125)</a> </ul> <b>Acceptances and Efficiencies:</b> <ul display="inline-block"> <li><a href="?table=AuxFig%2010a%20Acc:%20Onshell%20SR$_{0j}^{WZ}$">AuxFig 10a Acc: Onshell SR$_{0j}^{WZ}$</a> <li><a href="?table=AuxFig%2010b%20Eff:%20Onshell%20SR$_{0j}^{WZ}$">AuxFig 10b Eff: Onshell SR$_{0j}^{WZ}$</a> <li><a href="?table=AuxFig%2010c%20Acc:%20Onshell%20SR$_{nj}^{WZ}$">AuxFig 10c Acc: Onshell SR$_{nj}^{WZ}$</a> <li><a href="?table=AuxFig%2010d%20Eff:%20Onshell%20SR$_{nj}^{WZ}$">AuxFig 10d Eff: Onshell SR$_{nj}^{WZ}$</a> <li><a href="?table=AuxFig%2011a%20Acc:%20Onshell%20SR$_{low-m_{ll}-0j}^{Wh}$">AuxFig 11a Acc: Onshell SR$_{low-m_{ll}-0j}^{Wh}$</a> <li><a href="?table=AuxFig%2011b%20Eff:%20Onshell%20SR$_{low-m_{ll}-0j}^{Wh}$">AuxFig 11b Eff: Onshell SR$_{low-m_{ll}-0j}^{Wh}$</a> <li><a href="?table=AuxFig%2011c%20Acc:%20Onshell%20SR$_{low-m_{ll}-nj}^{Wh}$">AuxFig 11c Acc: Onshell SR$_{low-m_{ll}-nj}^{Wh}$</a> <li><a href="?table=AuxFig%2011d%20Eff:%20Onshell%20SR$_{low-m_{ll}-nj}^{Wh}$">AuxFig 11d Eff: Onshell SR$_{low-m_{ll}-nj}^{Wh}$</a> <li><a href="?table=AuxFig%2011e%20Acc:%20Onshell%20SR$_{DFOS}^{Wh}$">AuxFig 11e Acc: Onshell SR$_{DFOS}^{Wh}$</a> <li><a href="?table=AuxFig%2011f%20Eff:%20Onshell%20SR$_{DFOS}^{Wh}$">AuxFig 11f Eff: Onshell SR$_{DFOS}^{Wh}$</a> <li><a href="?table=AuxFig%2012a%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 12a Acc: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2012b%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 12b Eff: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2012c%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 12c Acc: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2012d%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 12d Eff: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2012e%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 12e Acc: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2012f%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 12f Eff: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2012g%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 12g Acc: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2012h%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 12h Eff: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2013a%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 13a Acc: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2013b%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 13b Eff: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2013c%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 13c Acc: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2013d%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 13d Eff: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2013e%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 13e Acc: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2013f%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 13f Eff: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2013g%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 13g Acc: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2013h%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 13h Eff: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2014a%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 14a Acc: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2014b%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 14b Eff: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2014c%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 14c Acc: Off. Higgsino SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2014d%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 14d Eff: Off. Higgsino SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2014e%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 14e Acc: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2014f%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 14f Eff: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2014g%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 14g Acc: Off. Higgsino SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2014h%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 14h Eff: Off. Higgsino SR$^{offWZ}_{highETmiss}$-nj</a> </ul>

This is the HEPData space for the ATLAS SUSY EWK three-lepton search. The full resolution figures can be found at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-09/ The full statistical likelihoods have been provided for this analysis. They can be downloaded by clicking on the purple 'Resources' button above and selecting the 'Common Resources' category. <b>Region yields:</b> <ul display="inline-block"> <li><a href="?table=Tab%2012%20Onshell%20WZ%20Signal%20Region%20Yields%20Table">Tab 12 Onshell WZ Signal Region Yields Table</a> <li><a href="?table=Tab%2013%20Onshell%20Wh%20Signal%20Region%20Yields%20Table">Tab 13 Onshell Wh Signal Region Yields Table</a> <li><a href="?table=Tab%2014%20Offshell%20low-$E_{T}^{miss}$%20Signal%20Region%20Yields%20Table">Tab 14 Offshell low-$E_{T}^{miss}$ Signal Region Yields Table</a> <li><a href="?table=Tab%2015%20Offshell%20high-$E_{T}^{miss}$%20Signal%20Region%20Yields%20Table">Tab 15 Offshell high-$E_{T}^{miss}$ Signal Region Yields Table</a> <li><a href="?table=Tab%2020%20RJR%20Signal%20Region%20Yields%20Table">Tab 20 RJR Signal Region Yields Table</a> <li><a href="?table=Fig%204%20Onshell%20Control%20and%20Validation%20Region%20Yields">Fig 4 Onshell Control and Validation Region Yields</a> <li><a href="?table=Fig%208%20Offshell%20Control%20and%20Validation%20Region%20Yields">Fig 8 Offshell Control and Validation Region Yields</a> <li><a href="?table=Fig%2010%20Onshell%20WZ%20Signal%20Region%20Yields">Fig 10 Onshell WZ Signal Region Yields</a> <li><a href="?table=Fig%2011%20Onshell%20Wh%20Signal%20Region%20Yields">Fig 11 Onshell Wh Signal Region Yields</a> <li><a href="?table=Fig%2012%20Offshell%20Signal%20Region%20Yields">Fig 12 Offshell Signal Region Yields</a> <li><a href="?table=Fig%2018%20RJR%20Control%20and%20Validation%20Region%20Yields">Fig 18 RJR Control and Validation Region Yields</a> </ul> <b>Exclusion contours:</b> <ul display="inline-block"> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs">Fig 16a WZ Exclusion: Wino-bino(+), Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs_Up">Fig 16a WZ Exclusion: Wino-bino(+), Obs_Up</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs_Down">Fig 16a WZ Exclusion: Wino-bino(+), Obs_Down</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp">Fig 16a WZ Exclusion: Wino-bino(+), Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp_Up">Fig 16a WZ Exclusion: Wino-bino(+), Exp_Up</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp_Down">Fig 16a WZ Exclusion: Wino-bino(+), Exp_Down</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20compressed_Obs">Fig 16a WZ Exclusion: Wino-bino(+), compressed_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20compressed_Exp">Fig 16a WZ Exclusion: Wino-bino(+), compressed_Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20offshell_Obs">Fig 16a WZ Exclusion: Wino-bino(+), offshell_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20offshell_Exp">Fig 16a WZ Exclusion: Wino-bino(+), offshell_Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20onshell_Obs">Fig 16a WZ Exclusion: Wino-bino(+), onshell_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20onshell_Exp">Fig 16a WZ Exclusion: Wino-bino(+), onshell_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs_Up">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs_Down">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp_Up">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp_Down">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20compressed_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20compressed_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20offshell_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20offshell_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20onshell_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), onshell_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20onshell_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), onshell_Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs_Up">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs_Down">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp_Up">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp_Down">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20compressed_Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20compressed_Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20offshell_Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20offshell_Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs_Up">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs_Down">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp_Up">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp_Down">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20compressed_Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20compressed_Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20offshell_Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20offshell_Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs">Fig 17 Wh Exclusion, Obs</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs_Up">Fig 17 Wh Exclusion, Obs_Up</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs_Down">Fig 17 Wh Exclusion, Obs_Down</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp">Fig 17 Wh Exclusion, Exp</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp_Up">Fig 17 Wh Exclusion, Exp_Up</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp_Down">Fig 17 Wh Exclusion, Exp_Down</a> </ul> <b>Upper limits:</b> <ul display="inline-block"> <li><a href="?table=AuxFig%208a%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8a WZ Excl. Upper Limit Obs. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208b%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8b WZ Excl. Upper Limit Exp. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208c%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8c WZ Excl. Upper Limit Obs. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208d%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8d WZ Excl. Upper Limit Exp. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208e%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(-)%20($\Delta%20m$)">AuxFig 8e WZ Excl. Upper Limit Obs. Wino-bino(-) ($\Delta m$)</a> <li><a href="?table=AuxFig%208f%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(-)%20($\Delta%20m$)">AuxFig 8f WZ Excl. Upper Limit Exp. Wino-bino(-) ($\Delta m$)</a> <li><a href="?table=AuxFig%208g%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Higgsino%20($\Delta%20m$)">AuxFig 8g WZ Excl. Upper Limit Obs. Higgsino ($\Delta m$)</a> <li><a href="?table=AuxFig%208h%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Higgsino%20($\Delta%20m$)">AuxFig 8h WZ Excl. Upper Limit Exp. Higgsino ($\Delta m$)</a> <li><a href="?table=AuxFig%209a%20Wh%20Excl.%20Upper%20Limit%20Obs.">AuxFig 9a Wh Excl. Upper Limit Obs.</a> <li><a href="?table=AuxFig%209b%20Wh%20Excl.%20Upper%20Limit%20Exp.">AuxFig 9b Wh Excl. Upper Limit Exp.</a> </ul> <b>Model-independent discovery fits:</b> <ul display="inline-block"> <li><a href="?table=Tab%2018%20Onshell%20Discovery%20Fit%20Table">Tab 18 Onshell Discovery Fit Table</a> <li><a href="?table=Tab%2019%20Offshell%20Discovery%20Fit%20Table">Tab 19 Offshell Discovery Fit Table</a> <li><a href="?table=Tab%2021%20RJR%20Discovery%20Fit%20Table">Tab 21 RJR Discovery Fit Table</a> </ul> <b>Kinematic distributions:</b> <ul display="inline-block"> <li><a href="?table=Fig%2013a%20SR$_{DFOS}^{Wh}$-1%20($\Delta%20R_{OS,%20near}$)">Fig 13a SR$_{DFOS}^{Wh}$-1 ($\Delta R_{OS, near}$)</a> <li><a href="?table=Fig%2013b%20SR$_{DFOS}^{Wh}$-2%20(3rd%20Lep.%20$p_{T}$)">Fig 13b SR$_{DFOS}^{Wh}$-2 (3rd Lep. $p_{T}$)</a> <li><a href="?table=Fig%2013c%20SR$_{0j}^{WZ}$%20($E_{T}^{miss}$)">Fig 13c SR$_{0j}^{WZ}$ ($E_{T}^{miss}$)</a> <li><a href="?table=Fig%2013d%20SR$_{0j}^{WZ}$%20($m_{T}$)">Fig 13d SR$_{0j}^{WZ}$ ($m_{T}$)</a> <li><a href="?table=Fig%2014a%20SR$^{offWZ}_{LowETmiss}$-0j%20($m_{T}^{minmll}$)">Fig 14a SR$^{offWZ}_{LowETmiss}$-0j ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014b%20SR$^{offWZ}_{LowETmiss}$-nj%20($m_{T}^{minmll}$)">Fig 14b SR$^{offWZ}_{LowETmiss}$-nj ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014c%20SR$^{offWZ}_{HighETmiss}$-0j%20($m_{T}^{minmll}$)">Fig 14c SR$^{offWZ}_{HighETmiss}$-0j ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014d%20SR$^{offWZ}_{HighETmiss}$-nj%20($p_T^l%20\div%20E_T^{miss}$)">Fig 14d SR$^{offWZ}_{HighETmiss}$-nj ($p_T^l \div E_T^{miss}$)</a> <li><a href="?table=Fig%2020a%20RJR%20SR3$\ell$-Low%20($p_{T}^{\ell%201}$)">Fig 20a RJR SR3$\ell$-Low ($p_{T}^{\ell 1}$)</a> <li><a href="?table=Fig%2020b%20RJR%20SR3$\ell$-Low%20($H_{3,1}^{PP}$)">Fig 20b RJR SR3$\ell$-Low ($H_{3,1}^{PP}$)</a> <li><a href="?table=Fig%2020c%20RJR%20SR3$\ell$-ISR%20($p_{T~ISR}^{CM}$)">Fig 20c RJR SR3$\ell$-ISR ($p_{T~ISR}^{CM}$)</a> <li><a href="?table=Fig%2020d%20RJR%20SR3$\ell$-ISR%20($R_{ISR}$)">Fig 20d RJR SR3$\ell$-ISR ($R_{ISR}$)</a> </ul> <b>Cutflows:</b> <ul display="inline-block"> <li><a href="?table=AuxTab%205%20Cutflow:%20Onshell%20WZ">AuxTab 5 Cutflow: Onshell WZ</a> <li><a href="?table=AuxTab%206%20Cutflow:%20Onshell%20Wh">AuxTab 6 Cutflow: Onshell Wh</a> <li><a href="?table=AuxTab%207%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(250,235)">AuxTab 7 Cutflow: Offshell Wino-bino(+) (250,235)</a> <li><a href="?table=AuxTab%208%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(125,85)">AuxTab 8 Cutflow: Offshell Wino-bino(+) (125,85)</a> <li><a href="?table=AuxTab%209%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(250,170)">AuxTab 9 Cutflow: Offshell Wino-bino(+) (250,170)</a> <li><a href="?table=AuxTab%2010%20Cutflow:%20Offshell%20Wino-bino(-)%20(250,235)">AuxTab 10 Cutflow: Offshell Wino-bino(-) (250,235)</a> <li><a href="?table=AuxTab%2011%20Cutflow:%20Offshell%20Wino-bino(-)%20(125,85)">AuxTab 11 Cutflow: Offshell Wino-bino(-) (125,85)</a> <li><a href="?table=AuxTab%2012%20Cutflow:%20Offshell%20Wino-bino(-)%20(250,170)">AuxTab 12 Cutflow: Offshell Wino-bino(-) (250,170)</a> <li><a href="?table=AuxTab%2013%20Cutflow:%20Offshell%20Higgsino%20(120,100)">AuxTab 13 Cutflow: Offshell Higgsino (120,100)</a> <li><a href="?table=AuxTab%2014%20Cutflow:%20Offshell%20Higgsino%20(100,40)">AuxTab 14 Cutflow: Offshell Higgsino (100,40)</a> <li><a href="?table=AuxTab%2015%20Cutflow:%20Offshell%20Higgsino%20(185,125)">AuxTab 15 Cutflow: Offshell Higgsino (185,125)</a> </ul> <b>Acceptances and Efficiencies:</b> <ul display="inline-block"> <li><a href="?table=AuxFig%2010a%20Acc:%20Onshell%20SR$_{0j}^{WZ}$">AuxFig 10a Acc: Onshell SR$_{0j}^{WZ}$</a> <li><a href="?table=AuxFig%2010b%20Eff:%20Onshell%20SR$_{0j}^{WZ}$">AuxFig 10b Eff: Onshell SR$_{0j}^{WZ}$</a> <li><a href="?table=AuxFig%2010c%20Acc:%20Onshell%20SR$_{nj}^{WZ}$">AuxFig 10c Acc: Onshell SR$_{nj}^{WZ}$</a> <li><a href="?table=AuxFig%2010d%20Eff:%20Onshell%20SR$_{nj}^{WZ}$">AuxFig 10d Eff: Onshell SR$_{nj}^{WZ}$</a> <li><a href="?table=AuxFig%2011a%20Acc:%20Onshell%20SR$_{low-m_{ll}-0j}^{Wh}$">AuxFig 11a Acc: Onshell SR$_{low-m_{ll}-0j}^{Wh}$</a> <li><a href="?table=AuxFig%2011b%20Eff:%20Onshell%20SR$_{low-m_{ll}-0j}^{Wh}$">AuxFig 11b Eff: Onshell SR$_{low-m_{ll}-0j}^{Wh}$</a> <li><a href="?table=AuxFig%2011c%20Acc:%20Onshell%20SR$_{low-m_{ll}-nj}^{Wh}$">AuxFig 11c Acc: Onshell SR$_{low-m_{ll}-nj}^{Wh}$</a> <li><a href="?table=AuxFig%2011d%20Eff:%20Onshell%20SR$_{low-m_{ll}-nj}^{Wh}$">AuxFig 11d Eff: Onshell SR$_{low-m_{ll}-nj}^{Wh}$</a> <li><a href="?table=AuxFig%2011e%20Acc:%20Onshell%20SR$_{DFOS}^{Wh}$">AuxFig 11e Acc: Onshell SR$_{DFOS}^{Wh}$</a> <li><a href="?table=AuxFig%2011f%20Eff:%20Onshell%20SR$_{DFOS}^{Wh}$">AuxFig 11f Eff: Onshell SR$_{DFOS}^{Wh}$</a> <li><a href="?table=AuxFig%2012a%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 12a Acc: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2012b%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 12b Eff: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2012c%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 12c Acc: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2012d%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 12d Eff: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2012e%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 12e Acc: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2012f%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 12f Eff: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2012g%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 12g Acc: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2012h%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 12h Eff: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2013a%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 13a Acc: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2013b%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 13b Eff: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2013c%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 13c Acc: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2013d%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 13d Eff: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2013e%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 13e Acc: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2013f%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 13f Eff: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2013g%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 13g Acc: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2013h%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 13h Eff: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2014a%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 14a Acc: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2014b%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 14b Eff: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2014c%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 14c Acc: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2014d%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 14d Eff: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2014e%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 14e Acc: Off. Higgsino SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2014f%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 14f Eff: Off. Higgsino SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2014g%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 14g Acc: Off. Higgsino SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2014h%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 14h Eff: Off. Higgsino SR$^{offWZ}_{highETmiss}$-nj</a> </ul>

Comparison of the observed data and expected SM background yields in the CRs (pre-fit) and VRs (post-fit) of the onshell $W\!Z$ and $W\!h$ selections. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the relative difference between the observed data and expected yields for the CRs and the significance of the difference for the VRs, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.

More…