The cross-sections for the production of single charged and neutral intermediate vector bosons were measured using integrated luminosities of 52 pb^{-1} and 154 pb^{-1} collected by the DELPHI experiment at centre-of-mass energies of 182.6 GeV and 188.6 GeV, respectively. The cross-sections for the reactions were determined in limited kinematic regions. The results found are in agreement with the Standard Model predictions for these channels.
Cross sections for single-W production in the (E- NUEBAR Q QBAR + CC) and (E- NUEBAR LEPTON LEPTONBAR) + CC) channels.
Cross sections for the E NU E NU channel, which includes contributions from both single-W and from single-Z0 with a large interference bewteen the two processes.
Cross sections for single-Z0 production in the hadronic channel.
Measurements of the trilinear gauge boson couplings WWgamma and WWZ are presented using the data taken by DELPHI in 1998 at a centre-of-mass energy of 189 GeV and combined with DELPHI data at 183 GeV. Values are determined for Delta(g_1^Z) and Delta(kappa_gamma), the differences of the WWZ charge coupling and of the WWgamma dipole coupling from their Standard Model values, and for lambda_gamma, the WWgamma quadrupole coupling. A measurement of the magnetic dipole and electric quadrupole moment of the W is extracted from the results for Delta(kappa_gamma) and lambda_gamma. The study uses data from the final states jjlv, jjjj, lX, jjX and gammaX, where j represents a quark jet, l an identified lepton and X missing four-momentum. The observations are consistent with the predictions of the Standard Model.
No description provided.
A new precise measurement of |V_{cb}| and of the branching ratio BR(\bar{B^0} -> D^{*+} \ell^- \bar{\nu_\ell}) has been performed using a sample of about 5000 semileptonic decays \bar{B^0} -> D^{*+} \ell^- \bar{\nu_\ell}, selected by the DELPHI detector at LEP I by tagging the soft pion from D^{*+} -> D^0 \pi^+. The results are: V_{cb}=(39.0 +/- 1.5 (stat.) ^{+2.5}_{-2.6} (syst. exp.) +/- 1.3 (syst. th.)) x 10^{-3} BR(\bar{B^0} -> D^{*+} \ell^- \bar{\nu_\ell})=(4.70 +/- 0.13 (stat.) ^{+0.36}_{-0.31} (syst. exp.))% The analytic dependences of the differential cross-section and of the Isgur Wise form factor as functions of the variable w = v_{B^0}.v_{D^*} have also been obtained by unfolding the experimental resolution.
The formfactors are evaluated at zero recoil of D meson. VCB is the V-CKM (Cabibbo-Kobayashi-Maskawa) mixing matrix element. The value of FORMFACTOR(1) = 0.91 +- 0.03.
A test of the QED process e+e- -> gamma gamma (gamma) is reported. The data analysed were collected with the DELPHI detector in 1998 and 1999 at the highest energies achieved at LEP, reaching 202 GeV in the centre-of-mass. The total integrated luminosity amounts to 375.7 pb^{-1}. The differential and total cross-sections for the process e+e- -> gamma gamma were measured, and found to be in agreement with the QED prediction. 95% Confidence Level (C.L.) lower limits on the QED cut-off parameters of Lambda+ > 330 GeV and Lambda- > 320 GeV were derived. A 95% C.L. lower bound on the mass of an excited electron of 311 GeV/c^2 (for lambda_gamma = 1) was obtained. s-channel virtual graviton exchange was searched for, resulting in 95% C.L. lower limits on the string mass scale, M_S: M_S > 713 GeV/c^2 (lambda = 1) and M_S > 691 GeV/c^2 (lambda = -1).
No description provided.
No description provided.
No description provided.
Measurements of on-shell ZZ production are described, using data collected by DELPHI in 1997 and 1998, at centre-of-mass energies sqrt(s) = 182.6 GeV and 188.6 GeV respectively. Results obtained in each of the final states q qbar q qbar, mu+mu- q qbar, e+e- q qbar, nu nubar q qbar, l+l-l+l-, and nu nubar l+l- are presented. The measured cross-sections for on-shell ZZ production via the tree-level doubly-resonant graphs (NC02) are: sigma_{NC02}(182.6 GeV) = 0.38 +- 0.18 (stat) +- 0.04 (syst) pb, sigma_{NC02}(188.6 GeV) = 0.60 +- 0.13 (stat) +- 0.07 (syst) pb. They are consistent with the Standard Model expectations of 0.25 pb and 0.65 pb at each energy.
No description provided.
An analysis of the data collected in 1997 and 1998 with the DELPHI detector at e+e- collision energies close to 183 and 189 GeV was performed in order to extract the hadronic and leptonic fermion-pair cross-sections, as well as the leptonic forward-backward asymmetries and angular distributions. The data are used to put limit on contact interactions between fermions, the exchange of R-parity violating SUSY sneutrinos, Z' bosons and the existence of gravity in extra dimensions.
No description provided.
No description provided.
No description provided.
The cross-section for the process e+e- -> W+W- has been measured with the data sample collected by DELPHI at an average centre-of-mass energy of 189 GeV and corresponding to an integrated luminosity of 155 pb^{-1}. Based on the 2392 events selected as WW candidates, the cross-section for the doubly resonant process e+e- -> W+W- has been measured to be 15.83 +- 0.38 (stat) +- 0.20 (syst) pb. The branching fractions of the W decay were also measured and found to be in good agreement with the Standard Model expectation. From these a value of the CKM mixing matrix element |V_{cs}| = 1.001 +- 0.040 (stat) +- 0.020 (syst) was derived.
Total W+ W- production cross section.
Cross section for the different decay channels.
The production of single photons has been studied in the reaction e+e- -> gamma + invisible particles at centre-of-mass energies of 183 GeV and 189 GeV. A previously published analysis of events with multi-photon final states accompanied by missing energy has been updated with 189 GeV data. The data were collected with the DELPHI detector and correspond to integrated luminosities of about 51 pb^{-1} and 158 pb^{-1} at the two energies. The number of light neutrino families is measured to be 2.84 +/- 0.15(stat) +/- 0.14(syst). The absence of an excess of events beyond that expected from Standard Model processes is used to set limits on new physics as described by supersymmetric and composite models. A limit on the gravitational scale is also determined.
No description provided.
Combined result.
The DELPHI detector at LEP has collected 54 pb^{-1} of data at a centre-of-mass energy around 183 GeV during 1997, 158 pb^{-1} around 189 GeV during 1998, and 187 pb^{-1} between 192 and 200 GeV during 1999. These data were used to measure the average charged particle multiplicity in e+e- -> b bbar events, <n>_{bb}, and the difference delta_{bl} between <n>_{bb} and the multiplicity, <n>_{ll}, in generic light quark (u,d,s) events: delta_{bl}(183 GeV) = 4.55 +/- 1.31 (stat) +/- 0.73 (syst) delta_{bl}(189 GeV) = 4.43 +/- 0.85 (stat) +/- 0.61 (syst) delta_{bl}(200 GeV) = 3.39 +/- 0.89 (stat) +/- 1.01 (syst). This result is consistent with QCD predictions, while it is inconsistent with calculations assuming that the multiplicity accompanying the decay of a heavy quark is independent of the mass of the quark itself.
Only statistical errors.
No description provided.
Production of Sigma- and Lambda(1520) in hadronic Z decays has been measured using the DELPHI detector at LEP. The Sigma- is directly reconstructed as a charged track in the DELPHI microvertex detector and is identified by its Sigma -> n pi decay leading to a kink between the Sigma- and pi-track. The reconstruction of the Lambda(1520) resonance relies strongly on the particle identification capabilities of the barrel Ring Imaging Cherenkov detector and on the ionisation loss measurement of the TPC. Inclusive production spectra are measured for both particles. The production rates are measured to be <N_{Sigma-}/N_{Z}^{had}> = 0.081 +/- 0.002 +/- 0.010, <N_{Lambda(1520)}/N_{Z}^{had}> = 0.029 +/- 0.005 +/- 0.005. The production rate of the Lambda(1520) suggests that a large fraction of the stable baryons descend from orbitally excited baryonic states. It is shown that the baryon production rates in Z decays follow a universal phenomenological law related to isospin, strangeness and mass of the particles.
The measured differential cross section for SIGMA- production.
The total production rate of SIGMA-. The second systematic (DSYS) error is due to the extrapolation to the fullx-range.
The measured differential cross section for LAMBDA(1520) production. The first error is the fit error.