Diffractive dissociation of quasi-real photons at a photon-proton centre of mass energy of W 200 GeV is studied with the ZEUS detector at HERA. The process under consideration is gamma p -> X N, where X is the diffractively dissociated photon system of mass M_X and N is either a proton or a nucleonic system with mass M_N < 2GeV. The cross section for this process in the interval 3 < M_X < 24 GeV relative to the total photoproduction cross section was measured to be sigma~partial_D / sigma_tot = 6.2 +- 0.2(stat) +- 1.4(syst)%. After extrapolating this result to the mass interval of m_phi~2 < M_X~2 < 0.05 W~2 and correcting it for proton dissociation, the fraction of the total cross section attributed to single diffractive photon dissociation, gamma p -> X p, is found to be sigma_SD / sigma_tot = 13.3 +- 0.5(stat) +- 3.6(syst)%. The mass spectrum of the dissociated photon system in the interval 8 < M_X < 24 GeV can be described by the triple pomeron (PPP) diagram with an effective pomeron intercept of alpha_P(0) = 1.12 +- 0.04(stat) +- 0.08(syst). The cross section for photon dissociation in the range 3 < M_X < 8 GeV is significantly higher than that expected from the triple pomeron amplitude describing the region 8 < M_X < 24 GeV. Assuming that this discrepancy is due to a pomeron-pomeron-reggeon (PPR) term, its contribution to the diffractive cross section in the interval 3 < M_X < 24 GeV is estimated to be f_PPR = 26 +- 3(stat) +- 12(syst)%.
Fraction of the total photoproduction cross section attributed to the photon dissociation.
The fraction of the total photoproduction cross section due to single dif fractive photon dissociation, in the mass range M_phi**2 < M_DD < X >**2 < 0.05 *W**2.
Identification of the diffractive processes was performed on the basis of the shape of reconstructed hadronic mass spectrum. No rapidity-gap was required.
None
AVERAGE TARGET POLARIZATION WAS 76 +- 3 PCT.
No description provided.
None
No description provided.
No description provided.
No description provided.
We present measurements of the structure function \Ft\ in $e~+p$ scattering at HERA in the range $3.5\;\Gevsq < \qsd < 5000\;\Gevsq$. A new reconstruction method has allowed a significant improvement in the resolution of the kinematic variables and an extension of the kinematic region covered by the experiment. At $ \qsd < 35 \;\Gevsq$ the range in $x$ now spans $6.3\cdot 10~{-5} < x < 0.08$ providing overlap with measurements from fixed target experiments. At values of $Q~2$ above 1000 GeV$~2$ the $x$ range extends to 0.5. Systematic errors below 5\perc\ have been achieved for most of the kinematic region. The structure function rises as \x\ decreases; the rise becomes more pronounced as \qsd\ increases. The behaviour of the structure function data is well described by next-to-leading order perturbative QCD as implemented in the DGLAP evolution equations.
No description provided.
No description provided.
No description provided.
We present a comprehensive study of the inclusive production of V 0 V 0 pairs (V 0 =Lambda, Lambda-bar or K S ) by Sigma - and pi - of 340 GeV/ c momentum and neutrons of 260 GeV/ c mean momentum in copper and carbon targets. In particular, the de pendence of the x F spectra on the combination of beam-particle and produced V 0 V 0 pair is investigated and compared to predictions obtained from PYTHIA and QSGM calculations. The data and these predictions differ in many details, the agreement can at b est be termed as qualitative. A signal from decays of the tensor meson f? 2 (1525) was observed in the K S K S mass distribution and inclusive production cross sections were measured. No signal was found from the double-strange H-dibaryon decaying to Lamb daLambda.
V0 V0 cross section for N on CU target.
V0 V0 cross section for N on C target.
V0 V0 cross section for PI- on CU target.
Using the MD-1 detector at the VEPP-4e+e− strorage ring we have measured the inclusive Λ and370-1 production rates in direct Γ(1S) decays
Lambda x spectrum in direct upsilon(1S) decay.
Lambda multiplicity in direct upsilon(1S) decays.
Lambda multiplicity in surrounding continuum.
We present results of the total cross section differenceΔσТ obtained in transmission measurements at the energies 0.86, 0.88, 0.91 and 0.94 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was transmitted through the polarized Saclay frozen-spin proton target. The beam and target polarizations were oriented in the vertical direction. The present results agree with previous SATURNE measurements and improve the amplitude analysis in the forward direction.
No description provided.
Average of this result and data from Fontaine et al. 1991, Nucl.Phys. B358, 297 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+2233> RED = 2233 </a>).
The total cross section of the processe+e− →hadrons has been measured in the center-of-mass energy range between 7.25 and 10.34 GeV using the MD-1 detector at the VEPP-4 collider. The ratioR=σ(e+e− →hadrons)/σ(e+e− →μ+μ−) was found to be constant in this energy range with the average value of 3.58±0.02±0.14.
Statistical errors only.
Mean value of R in the range 7.25 to 10.34 GeV.
The reaction π−p→η′η′n has been studied atpπ=37 GeV/c. Total of 14 events of this reaction have been selected. It has been shown that in the effective mass spectrum of the η′η′ system the events are concentrated mainly near the reaction threshold, which might be caused by the decayX(1910)→η′η′. The reaction cross-section has been evaluated: σ(π−p→η′η′n)=110±40 nb.
No description provided.
No description provided.
Inclusive production ofK0 andK* (892)0 mesons inK+A-interactions (A=Be, Cu, Pb) at the energy 11.2 GeV has been investigated to study hadronisation of the leading\(\bar s\)-quark; the results are presented. Double differential cross sections d2σ/dxfdpt2 were measured in the region of incident particle fragmentation (0.4≦xf≦1,pt≦0.5 GeV/c). The experimental data obtained were analysed on the basis of the Lund model FRITIOF and a quark-gluon model that takes into account colour screening and hadron formation length effects. The experimental data confirm the picture of hadronisation of the leading\(\bar s\)-quark developed in the latter model.
No description provided.
No description provided.
No description provided.