We have performed a high statistics measurement of the production rate and the energy flow pattern of hadron events between √ s =33 and 36.7 GeV. The data show no evidence for the production of a new quark with charge 2 3 e . Planar events in e + e − →hadrons are shown to have three well separated jets. The production rate and the shape of three-jet events are compared with many models and we find that only the QCD model can explain the data.
We report on measurements of the inclusive jet production cross section as a function of the jet transverse momentum in pp-bar collisions at sqrt{s} = 1.96 TeV}, using the k_T algorithm and a data sample corresponding to 1.0 fb^-1 collected with the Collider Detector at Fermilab in Run II. The measurements are carried out in five different jet rapidity regions with |yjet| < 2.1 and transverse momentum in the range 54 < \ptjet < 700 GeV/c. Next-to-leading order perturbative QCD predictions are in good agreement with the measured cross sections.
We present a measurement of the inclusive jet cross section in ppbar interactions at sqrt{s}=1.96 TeV using 385 pb^{-1} of data collected with the CDF II detector at the Fermilab Tevatron. The results are obtained using an improved cone-based jet algorithm (Midpoint). The data cover the jet transverse momentum range from 61 to 620 GeV/c, extending the reach by almost 150 GeV/c compared with previous measurements at the Tevatron. The results are in good agreement with next-to-leading order perturbative QCD predictions using the CTEQ6.1M parton distribution functions.
The e+e- -> p anti-p cross section is determined over a range of p anti-p masses, from threshold to 4.5 GeV/c^2, by studying the e+e- -> p anti-p gamma process. The data set corresponds to an integrated luminosity of 232 fb^-1, collected with the BABAR detector at the PEP-II storage ring, at an e+e- center-of-mass energy of 10.6 GeV. The mass dependence of the ratio of electric and magnetic form factors, |G_E/G_M|, is measured for p anti-p masses below 3 GeV/c^2: its value is found to be significantly larger than 1 for masses up to 2.2 GeV/c^2. We also measure J/psi -> p anti-p and psi(2S) -> p anti-p branching fractions and set an upper limit on Y(4260) -> p anti-p production and decay.
A measurement of the inclusive bottom jet cross section is presented for events containing a $Z$ boson in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV using the Collider Detector at Fermilab. $Z$ bosons are identified in their electron and muon decay modes, and $b$ jets with $E_T>20$ GeV and $|\eta|<1.5$ are identified by reconstructing a secondary decay vertex. The measurement is based on an integrated luminosity of about 330 ${\rm pb}^{-1}$. A cross section times branching ratio of $\sigma (Z+b {\rm jets}) \times {\cal B}(Z \to \ell^+ \ell^-)= 0.93 \pm 0.36$ pb is found, where ${\cal B}(Z\to \ell^+ \ell^-)$ is the branching ratio of the $Z$ boson or $\gamma^*$ into a single flavor dilepton pair ($e$ or $\mu$) in the mass range between 66 and 116 GeV$/c^2$. The ratio of $b$ jets to the total number of jets of any flavor in the $Z$ sample, within the same kinematic range as the $b$ jets, is $2.36 \pm 0.92%$. Here, the uncertainties are the quadratic sum of statistical and systematic uncertainties. Predictions made with NLO QCD agree, within experimental and theoretical uncertainties, with these measurements.
We study the processes e+ e- --> 3(pi+pi-)gamma, 2(pi+pi-pi0)gamma and K+ K- 2(pi+pi-)gamma, with the photon radiated from the initial state. About 20,000, 33,000 and 4,000 fully reconstructed events, respectively, have been selected from 232 fb-1 of BaBar data. The invariant mass of the hadronic final state defines the effective e+e- center-of-mass energy, so that these data can be compared with the corresponding direct e+e- measurements. From the 3(pi+pi-), 2(pi+pi-pi0) and K+ K- 2(pi+pi-) mass spectra, the cross sections for the processes e+ e- --> 3(pi+pi-), e+ e- --> 2(pi+pi-pi0) and e+ e- --> K+ K- 2(pi+pi-) are measured for center-of-mass energies from production threshold to 4.5 GeV. The uncertainty in the cross section measurement is typically 6-15%. We observe the J/psi in all these final states and measure the corresponding branching fractions.
We report a measurement of the rate of prompt diphoton production in $p\bar{p}$ collisions at $\sqrt{s}=1.96 ~\hbox{TeV}$ using a data sample of 207 pb$^{-1}$ collected with the upgraded Collider Detector at Fermilab (CDF II). The background from non-prompt sources is determined using a statistical method based on differences in the electromagnetic showers. The cross section is measured as a function of the diphoton mass, the transverse momentum of the diphoton system, and the azimuthal angle between the two photons and is found to be consistent with perturbative QCD predictions.
The total hadronic cross section in e + e − annihilation was measured at s =5.77 GeV to be σ h = 143.6 ± 1.5 (stat) ± 3.5 (sys) pb with only the QED corrections. The measurement was based on data corresponding to an integrated luminosity of 90.8 pb −1 accumulated by the TOPAZ detector at TRISTAN. Our data point put stringent constraints on the size of the γ - Z 0 interference and the Z 0 mass. Combining our data with the OPAL data at LEP, we obtained the coefficient of the interference and the Z 0 mass to be J had = 0.10 ± 0.26 and M z = 91.151 ± 0.008 GeV, respectively, in a model-independent analysis.
The process e+e- --> pi+ pi- pi0 gamma has been studied at a center-of-mass energy near the Y(4S) resonance using a 89.3 fb-1 data sample collected with the BaBar detector at the PEP-II collider. From the measured 3pi mass spectrum we have obtained the products of branching fractions for the omega and phi mesons, B(omega --> e+e-)B(omega --> 3pi)=(6.70 +/- 0.06 +/- 0.27)10-5 and B(phi --> e+e-)B(phi --> 3pi)=(4.30 +/- 0.08 +/- 0.21)10-5, and evaluated the e+e- --> pi+ pi- pi0 cross section for the e+e- center-of-mass energy range 1.05 to 3.00 GeV. About 900 e+e- --> J/psi gamma --> pi+ pi- pi0 gamma events have been selected and the branching fraction B(J/psi --> pi+ pi- pi0)=(2.18 +/- 0.19)% has been measured.
We have measured the cross section $\sigma(e^+e^-\to \pi^+\pi^- \gamma)$ at an energy $W=m_\phi=1.02$ GeV with the KLOE detector at the electron-positron collider DA$\Phi$NE. From the dependence of the cross section on the invariant mass of the two-pion system, we extract $\sigma(e^+e^-\to \pi^+\pi^-)$ for the mass range $0.35<s<0.95$ GeV$^2$. From this result, we calculate the pion form factor and the hadronic contribution to the muon anomaly, $a_\mu$.