Bose-Einstein correlations of charged hadrons are measured over a broad multiplicity range, from a few particles up to about 250 reconstructed charged hadrons in proton-proton collisions at $\sqrt{s} =$ 13 TeV. The results are based on data collected using the CMS detector at the LHC during runs with a special low-pileup configuration. Three analysis techniques with different degrees of dependence on simulations are used to remove the non-Bose-Einstein background from the correlation functions. All three methods give consistent results. The measured lengths of homogeneity are studied as functions of particle multiplicity as well as average pair transverse momentum and mass. The results are compared with data from both CMS and ATLAS at $\sqrt{s} =$ 7 TeV, as well as with theoretical predictions.
The Rinv fit parameters as a function of particle-level multiplicities using the HCS method in pp collisions at 13 TeV.
The Rinv fit parameters as a function of particle-level multiplicities (for p_T^trk>0.1GeV) using the HCS method in pp collisions at 13 TeV.
The Rinv fit parameters as a function of kT using the HCS method in pp collisions at 13 TeV.
The inclusive top quark pair ($t\bar{t}$) production cross-section $\sigma_{t\bar{t}}$ has been measured in proton$-$proton collisions at $\sqrt{s}=13$ TeV, using $36.1$ fb$^{-1}$ of data collected in 2015$-$16 by the ATLAS experiment at the LHC. Using events with an opposite-charge $e\mu$ pair and $b$-tagged jets, the cross-section is measured to be: \begin{equation}\nonumber \sigma_{t\bar{t}} = 826.4 \pm 3.6\,\mathrm{(stat)}\ \pm 11.5\,\mathrm{(syst)}\ \pm 15.7\,\mathrm{(lumi)}\ \pm 1.9\,\mathrm{(beam)}\,\mathrm{pb}, \end{equation} where the uncertainties reflect the limited size of the data sample, experimental and theoretical systematic effects, the integrated luminosity, and the LHC beam energy, giving a total uncertainty of 2.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. It is used to determine the top quark pole mass via the dependence of the predicted cross-section on $m_t^{\mathrm{pole}}$, giving $m_t^{\mathrm{pole}}=173.1^{+2.0}_{-2.1}$ GeV. It is also combined with measurements at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV to derive ratios and double ratios of $t\bar{t}$ and $Z$ cross-sections at different energies. The same event sample is used to measure absolute and normalised differential cross-sections as functions of single-lepton and dilepton kinematic variables, and the results compared with predictions from various Monte Carlo event generators.
Absolute differential cross-section in the fiducial region as a function of lepton pT. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb). The last bin includes overflow beyond the upper bin boundary. The corresponding correlation matrices are given in Tables 23 and 24.
Normalised differential cross-section in the fiducial region as a function of lepton pT. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb). The last bin includes overflow beyond the upper bin boundary. The corresponding correlation matrices are given in Tables 25 and 26.
Absolute differential cross-section in the fiducial region as a function of lepton |eta|. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb). The corresponding correlation matrices are given in Tables 27 and 28.
Anisotropies in the initial energy density distribution of the quark-gluon plasma created in high energy heavy ion collisions lead to anisotropies in the azimuthal distributions of the final-state particles known as collective flow. Fourier harmonic decomposition is used to quantify these anisotropies. The higher-order harmonics can be induced by the same order anisotropies (linear response) or by the combined influence of several lower order anisotropies (nonlinear response) in the initial state. The mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles are measured as functions of transverse momentum and centrality in PbPb collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_\mathrm{NN}} =$ 2.76 and 5.02 TeV with the CMS detector. The results are compared with viscous hydrodynamic calculations using several different initial conditions, as well as microscopic transport model calculations. None of the models provides a simultaneous description of the mixed higher-order flow harmonics and nonlinear response coefficients.
Mixed higher-order flow harmonic $v_4\{\Psi_{22}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.
Mixed higher-order flow harmonic $v_5\{\Psi_{23}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.
Mixed higher-order flow harmonic $v_6\{\Psi_{222}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.
The elliptic flow ($v_{2}$) of (anti-)$^{3}$He is measured in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV in the transverse-momentum ($p_{\rm{T}}$) range of 2-6 GeV/$c$ for the centrality classes 0-20%, 20-40%, and 40-60% using the event-plane method. This measurement is compared to that of pions, kaons, and protons at the same center-of-mass energy. A clear mass ordering is observed at low $p_{\rm{T}}$, as expected from relativistic hydrodynamics. The violation of the scaling of $v_{2}$ with the number of constituent quarks at low $p_{\rm{T}}$, already observed for identified hadrons and deuterons at LHC energies, is confirmed also for (anti-)$^{3}$He. The elliptic flow of (anti-)$^{3}$He is underestimated by the Blast-Wave model and overestimated by a simple coalescence approach based on nucleon scaling. The elliptic flow of (anti-)$^{3}$He measured in the centrality classes 0-20% and 20-40% is well described by a more sophisticated coalescence model where the phase-space distributions of protons and neutrons are generated using the iEBE-VISHNU hybrid model with AMPT initial conditions.
Event-plane resolution $R_{\Psi_{2}}$ of the second harmonic as a function of the collision centrality.
Elliptic flow ($v_{2}$) of (anti-)$^{3}$He measured in Pb-Pb collisions at \sqrt{s_{\mathrm{NN}}} = 5.02 TeV for the centrality classes 0--20$\%$, 20--40$\%$, and 40--60$\%$. The statistical uncertainties are shown as vertical bars, systematic uncertainties as boxes.
Elliptic flow ($v_{2}$) of (anti-)$^{3}$He measured in Pb-Pb collisions at \sqrt{s_{\mathrm{NN}}} = 5.02 TeV for the centrality classes 0--20$\%$, 20--40$\%$, and 40--60$\%$. The statistical uncertainties are shown as vertical bars, systematic uncertainties as boxes.
The differential invariant yield as a function of transverse momentum ($p_\mathrm{T}$) of electrons from semileptonic heavy-flavour hadron decays was measured at midrapidity in central (0-10%), semi-central (30-50%) and peripheral (60-80%) lead-lead (Pb-Pb) collisions at $\sqrt{s_{\mathrm{NN}}}=5.02\text{ TeV}$ in the $p_{\mathrm{T}}$ intervals 0.5-26 GeV/$c$ (0-10% and 30-50%) and 0.5-10 GeV/$c$ (60-80%). The production cross section in proton-proton (pp) collisions at $\sqrt{s}=5.02$ TeV was measured as well in $0.5<p_\mathrm{T}<10$ GeV/$c$ and it lies close to the upper band of perturbative QCD calculation uncertainties up to $p_\mathrm{T}=5$ GeV/$c$ and close to the mean value for larger $p_\mathrm{T}$. The modification of the electron yield with respect to what is expected for an incoherent superposition of nucleon-nucleon collisions is evaluated by measuring the nuclear modification factor $R_{\mathrm{AA}}$. The measurement of the $R_{\mathrm{AA}}$ in different centrality classes allows in-medium energy loss of charm and beauty quarks to be investigated. The $R_{\mathrm{AA}}$ shows a suppression with respect to unity at intermediate $p_\mathrm{T}$, which increases while moving towards more central collisions. Moreover, the measured $R_{\mathrm{AA}}$ is sensitive to the modification of the parton distribution functions (PDF) in nuclei, like nuclear shadowing, which causes a suppression of the heavy-quark production at low $p_\mathrm{T}$ in heavy-ion collisions at LHC.
HFe cross section in pp
HFe cross section in Pb-Pb, 0-10 centrality
HFe cross section in Pb-Pb, 30-50 centrality
A search is performed for a pseudoscalar Higgs boson, A, decaying into a 125 GeV Higgs boson h and a Z boson. The h boson is specifically targeted in its decay into a pair of tau leptons, while the Z boson decays into a pair of electrons or muons. A data sample of proton-proton collisions collected by the CMS experiment at the LHC at $\sqrt{s} =$ 13 TeV is used, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. No excess above the standard model background expectations is observed in data. A model-independent upper limit is set on the product of the gluon fusion production cross section for the A boson and the branching fraction to Zh$\to\ell\ell\tau\tau$. The observed upper limit at 95% confidence level ranges from 27 to 5 fb for A boson masses from 220 to 400 GeV, respectively. The results are used to constrain the extended Higgs sector parameters for two benchmark scenarios of the minimal supersymmetric standard model.
The expected and observed 95% CL model-independent upper limits on the product of the cross section and branching fraction for the A boson (pseudoscalar Higgs boson).
A search for pair production of the supersymmetric partner of the top quark, the top squark, in proton-proton collision events at $ \sqrt{s} =$ 13 TeV is presented in a final state containing hadronically decaying tau leptons and large missing transverse momentum. This final state is highly sensitive to high-$\tan{\beta}$ or higgsino-like scenarios in which decays of electroweak gauginos to tau leptons are dominant. The search uses a data set corresponding to an integrated luminosity of 77.2 fb$^{-1}$, which was recorded with the CMS detector during 2016 and 2017. No significant excess is observed with respect to the background prediction. Exclusion limits at 95% confidence level are presented in the top squark and lightest neutralino mass plane within the framework of simplified models, in which top squark masses up to 1100 GeV are excluded for a nearly massless neutralino.
Values of the predicted SM background events from various sources and observed events in each of the 15 signal regions.
Values of the predicted signal yields in each of the 15 signal regions (for $ x=0.25 $).
Values of the predicted signal yields in each of the 15 signal regions (for $ x=0.5 $).
The azimuthal anisotropy of charged particles produced in $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV $p$+Pb collisions is measured with the ATLAS detector at the LHC. The data correspond to an integrated luminosity of $165$ $\mathrm{nb}^{-1}$ that was collected in 2016. Azimuthal anisotropy coefficients, elliptic $v_2$ and triangular $v_3$, extracted using two-particle correlations with a non-flow template fit procedure, are presented as a function of particle transverse momentum ($p_\mathrm{T}$) between $0.5$ and $50$ GeV. The $v_2$ results are also reported as a function of centrality in three different particle $p_\mathrm{T}$ intervals. The results are reported from minimum-bias events and jet-triggered events, where two jet $p_\mathrm{T}$ thresholds are used. The anisotropies for particles with $p_\mathrm{T}$ less than about $2$ GeV are consistent with hydrodynamic flow expectations, while the significant non-zero anisotropies for $p_\mathrm{T}$ in the range $9$-$50$ GeV are not explained within current theoretical frameworks. In the $p_\mathrm{T}$ range $2$-$9$ GeV, the anisotropies are larger in minimum-bias than in jet-triggered events. Possible origins of these effects, such as the changing admixture of particles from hard scattering and the underlying event, are discussed.
Distribution of $v_{2}$ from MBT events plotted as a function of the A-particle $p_\mathrm{T}$ for 0-5% centrality.
Distribution of $v_{2}$ from $p_{T}^{jet}>75$ GeV events plotted as a function of the A-particle $p_\mathrm{T}$ for 0-5% centrality.
Distribution of $v_{2}$ from $p_{T}^{jet}>100$ GeV events plotted as a function of the A-particle $p_\mathrm{T}$ for 0-5% centrality.
The measurement of the azimuthal-correlation function of prompt D mesons with charged particles in pp collisions at $\sqrt{s}$ = 5.02 TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV with the ALICE detector at the LHC is reported. The D$^{\rm 0}$, D$^{\rm +}$, and D$^{\rm *+}$ mesons, together with their charge conjugates, were reconstructed at midrapidity in the transverse momentum interval 3 < $p_{\rm T}$ < 24 GeV/c and correlated with charged particles having $p_{\rm T}$ > 0.3 GeV/c and pseudorapidity $|\eta| <$ 0.8. The properties of the correlation peaks appearing in the near- and away-side regions (for $\Delta \varphi \approx$ 0 and $\Delta \varphi \approx \pi$, respectively) were extracted via a fit to the azimuthal correlation functions. The shape of the correlation functions and the near- and away-side peak features are found to be consistent in pp and p-Pb collisions, showing no modifications due to nuclear effects within uncertainties. The results are compared with predictions from Monte Carlo simulations performed with the PYTHIA, POWHEG+PYTHIA, HERWIG, and EPOS 3 event generators.
Comparison of the azimuthal-correlation distributions of D mesons (average of D$^{0}$, D$^{+}$, D$^{*+}$) with $3 < p_{\rm T} < 5$ GeV/$c$ and charged particles with $p_{\rm T} > 0.3$ GeV/$c$, in pp collisions at $\sqrt{s} = 5.02$ TeV and p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, after baseline subtraction. Rapidity range for the D mesons are $|y^{\rm D}_{\rm cms}| < 0.5$ in pp, $-0.96 < y^{\rm D}_{\rm cms} < 0.04$ in p-Pb. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D}| < 1$. The azimuthal-correlation distributions are reported in the range $0 < \Delta\varphi < \pi$.
Comparison of the azimuthal-correlation distributions of D mesons (average of D$^{0}$, D$^{+}$, D$^{*+}$) with $5 < p_{\rm T} < 8$ GeV/$c$ and charged particles with $p_{\rm T} > 0.3$ GeV/$c$, in pp collisions at $\sqrt{s} = 5.02$ TeV and p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, after baseline subtraction. Rapidity range for the D mesons are $|y^{\rm D}_{\rm cms}| < 0.5$ in pp, $-0.96 < y^{\rm D}_{\rm cms} < 0.04$ in p-Pb. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D}| < 1$. The azimuthal-correlation distributions are reported in the range $0 < \Delta\varphi < \pi$.
Comparison of the azimuthal-correlation distributions of D mesons (average of D$^{0}$, D$^{+}$, D$^{*+}$) with $8 < p_{\rm T} < 16$ GeV/$c$ and charged particles with $p_{\rm T} > 0.3$ GeV/$c$, in pp collisions at $\sqrt{s} = 5.02$ TeV and p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, after baseline subtraction. Rapidity range for the D mesons are $|y^{\rm D}_{\rm cms}| < 0.5$ in pp, $-0.96 < y^{\rm D}_{\rm cms} < 0.04$ in p-Pb. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D}| < 1$. The azimuthal-correlation distributions are reported in the range $0 < \Delta\varphi < \pi$.
The multiplicity dependence of electron production from heavy-flavour hadron decays as a function of transverse momentum was measured in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV using the ALICE detector at the LHC. The measurement was performed in the centre-of-mass rapidity interval $-1.07 < y_{\rm cms} < 0.14$ and transverse momentum interval 2 $< p_{\rm T} <$ 16 GeV/$c$. The multiplicity dependence of the production of electrons from heavy-flavour hadron decays was studied by comparing the $p_{\rm T}$ spectra measured for different multiplicity classes with those measured in pp collisions ($Q_{\rm pPb}$) and in peripheral p-Pb collisions ($Q_{\rm CP}$). The $Q_{\rm pPb}$ results obtained are consistent with unity within uncertainties in the measured $p_{\rm T}$ interval and event classes. This indicates that heavy-flavour decay electron production is consistent with binary scaling and independent of the geometry of the collision system. Additionally, the results suggest that cold nuclear matter effects are negligible within uncertainties, in the production of heavy-flavour decay electrons at midrapidity in p-Pb collisions.
$p_{\rm T}$-differential invariant cross section of electrons from heavy-flavour hadron decays in p--Pb collisions
$p_{\rm T}$-differential invariant cross section of electrons from heavy-flavour hadron decays in p--Pb collisions in 0--20\% centrality
$p_{\rm T}$-differential invariant cross section of electrons from heavy-flavour hadron decays in p--Pb collisions in 20--40\% centrality