Multi-strange baryon and anti-baryon production is expected to be a useful probe in the search for Quark-Gluon Plasma formation. We present the transverse mass distributions of negative particles, K o s, Λs, Λ s, and Ξ − s produced in sulphurtungsten interactions at 200 GeV/c per nucleon and give the corrected ratios Λ Λ, Ξ − Λ and Ξ − /Λ . We note that our ratio Ξ − / Λ appears large in comparison to that from p p interactions.
No description provided.
No description provided.
No description provided.
Multi-strange baryon and antibaryon production is expected to be a useful probe in the search for quark-gluon plasma formation. We present the transverse mass distributions of negative particles, Λ' s , Λ ' s and Ξ − ' s produced in sulphur-tungsten interactions at 200 GeV/ c per nucleon and give the corrected rations Λ /Λ, Ξ − /Λ and Ξ − / Λ . Our ratio Ξ − / Λ appears to be larger than that from pp interactions.
Inverse slopes for different particle production.
Data from this and other WA85 publications.
Data from this and other WA85 publications.
Production of multi-strange baryons and antibaryons is expected to be a useful indicator in the search for Quark-Gluon Plasma formation. Production of Ξ − and Ξ − has been observed for the first time in ultra-relativistic heavy ion interactions by the WA85 Experiment. We describe the procedure used to select these cascade candidates and show that Ξ − and Ξ − decays can be identified. Preliminary ratios of Ξ/Ξ production in sulphur-tungsten and proton-tungsten interactions are also presented.
PRODUCTION AT CENTRAL RAPIDITY. 123 XI- AND 53 XIBAR+ CANDIDATES.
PRODUCTION AT CENTRAL RAPIDITY. 82 XI- AND 22 XIBAR+ CANDIDATES.
The reactionpp→pf(K+K-π+π-)ps, where theK+K− π+π- system is centrally produced, has been studied at 300 GeV/c. TheK*0\(K^{*0} \bar K^{*0} \) final state has been observed and the cross sections for its central production are found to be the same at 300 and 85 GeV/c. TheK*0\(K^{*0} \bar K^{*0} \) final state appears to be produced as a non-resonant threshold enhancement.
No description provided.
Cross sections for centrally produced vector-vector final states with mass greater than the phi-phi production threshold.
The reaction pp→p f ( π + π − π + π − )p s , where the π + π − π + π − system is centrally produced, has been studied at 300 GeV/ c in an experiment designed to search for gluonic states. The π + π − π + π − mass spectrum shows evidence for the f 1 (1285) with a mass of 1281±1 MeV and a width of 31±5 MeV. In addition there is evidence for two new enhancements at masses of 1449±4 and 1901±13 MeV with widths of 78±18 and 312±61 MeV respectively. An analysis of the state at 1.45 GeV indicates that it is not a π + π − π + π − decay mode of the f 1 (1420) or ι η(1440) .
No description provided.
No description provided.
No description provided.
The reaction pp→p f (K + K − K + K − )p s in which the K + K − K + K − system is centrally produced has been studied at 300 GeV/ c . φφ production has been observed and the ratio σ (φK + K − )/ σ ( φφ ) is 1.0±0.3. The cross section for central production of φφ is found to be the same at 300 GeV/ c and 85 GeV/ c . An angular analysis of the φφ system favours J P =2 + over 0 − .
No description provided.
Results are presented of an analysis of the reaction pp→p f (K S 0 K ± π ∓ )p s at 300 GeV/ c . Clear f 1 (1285) and f 1 (1420) signals are seen. A spin-parity analysis shows that both are consistent with being 1 ++ states. The f 1 (1420) is found to decay only to K ∗ K and no 0 −+ or 1 +− waves are required to describe the data. The production of the f 1 (1285) as a function of energy is not the same as that for the f 1 (1420) whose cross section is found to be constant with energy.
No description provided.
A high-statistics search for resonances in the π − p total cross section has been carried out over the incident momentum region from 2 to 14 GeV/ c . The measurements were performed with a transmission technique using multiwire proportional chambers in place of the conventional counter arrays. A microprocessor unit was used for the on-line analysis of the data, allowing a total of ≈ 50 000 events to be examined in a 300 ms burst. The search aimed at detecting the possible formation in π − p collisions of narrow non-strange baryon resonances. The momentum region was uniformly scanned with a total of ≈4500 mmeasurements in fixed fractional momentum steps of d P / P = 5 × 10 −4 . The relative statistical precision of each measurement was d σ / σ = ±0.3%. Within these limits no significant structure was detected.
ENERGY SCAN IN MOMENTUM STEPS OF D(PLAB)/PLAB OF 5*10**-4.