We have studied the process e + e − → n γ (n ≥ 2) at centre-of-mass energies of 161.3 GeV and 172.1 GeV. The analysis is based on a sample of events collected by the L3 detector in 1996 corresponding to total integrated luminosities of 10.7 pb −1 and 10.1 pb −1 respectively. The observed rates of events with two and more photons and the characteristic distributions are in good agreement with the Standard Model expectations. This is used to set lower limits on contact interaction energy scale parameters, on the QED cut-off parameters and on the mass of excited electrons.
No description provided.
We report on the measurement of W-boson pair-production with the L3 detector at LEP at an average centre-of-mass energy of 172.13 GeV. In a data sample corresponding to a total luminosity of 10.25 pb −1 we select 110 four-fermion events with pairs of hadronic jets or leptons with high invariant masses. Branching fractions of W decays into different fermion-antifermion pairs are determined with and without the assumption of charged-current lepton universality. The branching fraction for hadronic W decays is measured to be: B (W → hadrons) = 64.2 −3.8 +3.7 (stat.) ± 0.5 (syst.) %. Combining all final states the total cross section for W-pair production is measured to be: σ WW = 12.27 −1.32 +1.41 (stat.) ± 0.23 (syst.) pb. The results are in good agreement with the Standard Model.
No description provided.
We have searched for heavy neutral gauge bosons (Z′) in dielectron and dimuon decay modes using 110pb−1 of p¯p collisions at s=1.8TeV collected with the Collider Detector at Fermilab. We present a limit on the production cross section times branching ratio of a Z′ boson decaying into dileptons as a function of Z′ mass. For mass MZ′>600GeV/c2, the upper limit is 40 fb at 95% confidence level. We set the lower mass limits of 690, 590, 620, 595, 565, 630, and 600GeV/c2 for ZSM′, Zψ, Zη, Zχ, ZI, ZLR, and ZALRM, respectively.
M is the mass of ZPRIME boson. Sigma times branching ratio.
This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel $D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ $ (+ c.c.) has been used in the study. The $e^+p$ cross section for inclusive D^{*\pm} production with $5
No description provided.
Integrated charm cross sections in two Q**2 regions.
Distribution of the fractional momentum of the D* in the gamma*-p system.
The electroproduction of rho mesons with proton diffractive dissociation for Q^2 > 7 GeV^2 and the elastic electroproduction of Phi mesons for Q^2 > 6 Gev^2 are studied in e^+ p collisions at HERA with the H1 detector, for an integrated luminosity of 2.8 pb-1. The dependence of the cross sections on P_t^2 and Q^2 is measured, and the vector meson polarisation obtained. The cross section ratio between proton dissociative and elastic production of rho mesons is measured and discussed in the framework of the factorisation hypothesis of diffractive vertices. The ratio of the elastic cross section for Phi and rho meson production is investigated as a function of Q^2.
Corrected PT**2 distribution for RHO production from the proton dissociative sample. Statistical errors only.
Cross sections and ratio of proton dissociative to elastic cross sections.
Cross sections and ratio of proton dissociative to elastic cross sections.
We report on measurements of e + e − annihilation into hadrons and lepton pairs. The data have been taken with the L3 detector at LEP at center-of-mass energies between 161 GeV and 172 GeV. In a data sample corresponding to 21.2 pb −1 of integrated luminosity 2728 hadronic and 868 lepton-pair events are selected. The measured cross sections and leptonic forward-backward asymmetries agree well with the Standard Model predictions.
No description provided.
No description provided.
No description provided.
We present a measurement of the ttbar production cross section in ppbar collisions at root(s) = 1.8TeV by the D0 experiment at the Fermilab Tevatron. The measurement is based on data from an integrated luminosity of approximately 125 pb~-1 accumulated during the 1992-1996 collider run. We observe 39 ttbar candidate events in the dilepton and lepton+jets decay channels with an expected background of 13.7+-2.2 events. For a top quark mass of 173.3GeV/c~2, we measure the ttbar production cross section to be 5.5+-1.8 pb.
Different channels are used for evaluation of the cross section magnitudes. The last value is obtained from the previous one by adding the errors in quadrature.
We present evidence for dilepton events from t tbar production with one electron or muon and one hadronically decaying tau lepton from the decay t tbar -> (l nu_l) (tau nu_tau) b bbar, (l=e, mu), using the Collider Detector at Fermilab (CDF). In a 109 pb~-1 data sample of p pbar collisions at sqrt(s) = 1.8 TeV we expect 1 signal event and a total background of 2 events; we observe 4 candidate events (2 e tau and 2 mu tau). Three of these events have jets identified as b candidates, compared to an estimated background of 0.28+-0.02 events.
Two complementary techniques for identifying TAU's are used (see text), one'track-based' (C=TRCK) and other 'calorimeter-based' (C=CALO).
The cross section of the γγ → p p reaction was measured at two-photon center-of-mass energy ( W γγ ) between 2.2 and 3.3 GeV, using the two-photon process at an e + e − collider, TRISTAN. The W γγ dependence of the cross section integrated over a c.m. angular region of | cos θ ∗ | < 0.6 is in good agreement with the previous measurements and the theoreticalv prediction based on diquark model in the high W γγ region.
Numerical values supplied by Hirhoshi Hamasaki.
Angular distributions.
Diffractive dissociation of quasi-real photons at a photon-proton centre of mass energy of W 200 GeV is studied with the ZEUS detector at HERA. The process under consideration is gamma p -> X N, where X is the diffractively dissociated photon system of mass M_X and N is either a proton or a nucleonic system with mass M_N < 2GeV. The cross section for this process in the interval 3 < M_X < 24 GeV relative to the total photoproduction cross section was measured to be sigma~partial_D / sigma_tot = 6.2 +- 0.2(stat) +- 1.4(syst)%. After extrapolating this result to the mass interval of m_phi~2 < M_X~2 < 0.05 W~2 and correcting it for proton dissociation, the fraction of the total cross section attributed to single diffractive photon dissociation, gamma p -> X p, is found to be sigma_SD / sigma_tot = 13.3 +- 0.5(stat) +- 3.6(syst)%. The mass spectrum of the dissociated photon system in the interval 8 < M_X < 24 GeV can be described by the triple pomeron (PPP) diagram with an effective pomeron intercept of alpha_P(0) = 1.12 +- 0.04(stat) +- 0.08(syst). The cross section for photon dissociation in the range 3 < M_X < 8 GeV is significantly higher than that expected from the triple pomeron amplitude describing the region 8 < M_X < 24 GeV. Assuming that this discrepancy is due to a pomeron-pomeron-reggeon (PPR) term, its contribution to the diffractive cross section in the interval 3 < M_X < 24 GeV is estimated to be f_PPR = 26 +- 3(stat) +- 12(syst)%.
Fraction of the total photoproduction cross section attributed to the photon dissociation.
The fraction of the total photoproduction cross section due to single dif fractive photon dissociation, in the mass range M_phi**2 < M_DD < X >**2 < 0.05 *W**2.
Identification of the diffractive processes was performed on the basis of the shape of reconstructed hadronic mass spectrum. No rapidity-gap was required.