The electroproduction of J/psi and psi(2S) mesons is studied in elastic, quasi-elastic and inclusive reactions for four momentum transfers 2 < Q^2 < 80 GeV^2 and photon-proton centre of mass energies 25 < W < 180 GeV. The data were taken with the H1 detector at the electron proton collider HERA in the years 1995 to 1997. The total virtual photon-proton cross section for elastic J/psi production is measured as a function of Q^2 and W. The dependence of the production rates on the square of the momentum transfer from the proton (t) is extracted. Decay angular distributions are analysed and the ratio of the longitudinal and transverse cross sections is derived. The ratio of the cross sections for quasi-elastic psi(2S) and J/psi meson production is measured as a function of Q^2. The results are discussed in terms of theoretical models based upon perturbative QCD. Differential cross sections for inclusive and inelastic production of J/psi mesons are determined and predictions within two theoretical frameworks are compared with the data, the non-relativistic QCD factorization approach including colour octet and colour singlet contributions, and the model of Soft Colour Interactions.
Cross section for elastic J/PSI photoproduction in W bins.
Cross section for elastic J/PSI photoproduction in W bins.
Cross section for elastic J/PSI photoproduction in W bins.
The elastic electroproduction of rho mesons is studied at HERA with the H1 detector for a photon virtuality in the range 1 < Q^2 < 60 GeV^2 and for a hadronic centre of mass energy in the range 30 < W < 140 GeV. The shape of the pipi mass distribution in the rho resonance region is measured as a function of Q^2. The full set of rho spin density matrix elements is determined, and evidence is found for a helicity flip amplitude at the level of 8 +- 3 % of the non-flip amplitudes. Measurements are presented of the dependence of the cross section on Q^2, W and t (the four-momentum transfer squared to the proton). They suggest that, especially at large Q^2, the gamma^*p cross section develops a stronger W dependence than that expected from the behaviour of elastic and total hadron-hadron cross sections.
Average values of the spin density matrix elements measured for the 1996 data sample.
Spin density matrix elements measured for 3 Q**2 values for the 1996 data sample.
Spin density matrix elements measured for 3 W values for the 1996 data sample.
Energy-integrated reaction cross sections have been measured at energies ranging from 38 to 80 MeV/nucleon for various exotic neutron-rich isotopes of Al, Si, P, S, Cl, Ar, K, Ca, Sc, and Ti stopping in Si. An experimental technique is employed where Si detectors are used for both particle identification and to serve as the target material. The reduced strong absorption radii r02 are deduced and compared with other experimental results. The radius dependence on the neutron number was studied and a trend of increasing reduced radius with neutron excess was found. This behavior is similar to that seen in lighter systems, although less pronounced than found there. The implications of this result on the conjectured existence of neutron halo or skin nuclei is discussed.
No description provided.
No description provided.
No description provided.
The triple-differential dijet cross-section, d^3 sigma_{ep}/dQ2 dE_t2 dxgjets, is measured with the H1 detector at HERA as a function of the photon virtuality Q^2, the fraction of the photon's momentum carried by the parton entering the hard scattering, xgjets, and the square of the mean transverse energy, E_t2, of the two highest E_t jets. Jets are found using a longitudinal boost-invariant k_T clustering algorithm in the gamma* p center of mass frame. The measurements cover the ranges 1.6 < Q^2 < 80 GeV$^2 in virtuality and 0.1 < y < 0.7 in inelasticity y. The results are well described by leading order QCD models which include the effects of a resolved component to the virtual photon. Models which treat the photon as point-like fail to describe the data. An effective leading order parton density for the virtual photon is extracted as a function of the photon virtuality, the probing scale and the parton momentum fraction. The x_gamma and probing scale dependences of the parton density show characteristic features of photon structure, and a suppression of this structure with increasing Q^2 is seen.
No description provided.
No description provided.
No description provided.
We report measurements of Xi and Xi-bar hyperon absolute yields as a function of rapidity in 158 GeV/c Pb+Pb collisions. At midrapidity, dN/dy = 2.29 +/- 0.12 for Xi, and 0.52 +/- 0.05 for Xi-bar, leading to the ratio of Xi-bar/Xi = 0.23 +/- 0.03. Inverse slope parameters fitted to the measured transverse mass spectra are of the order of 300 MeV near mid-rapidity. The estimated total yield of Xi particles in Pb+Pb central interactions amounts to 7.4 +/- 1.0 per collision. Comparison to Xi production in properly scaled p+p reactions at the same energy reveals a dramatic enhancement (about one order of magnitude) of Xi production in Pb+Pb central collisions over elementary hadron interactions.
Data are given at the midrapidity value.
Requested data from authors.
The cross section for the photoproduction of events containing three jets with a three-jet invariant mass of M_3J > 50 GeV has been measured with the ZEUS detector at HERA. The three-jet angular distributions are inconsistent with a uniform population of the available phase space but are well described by parton shower models and O(alpha alpha_s^2) pQCD calculations. Comparisons with the parton shower model indicate a strong contribution from initial state radiation as well as a sensitivity to the effects of colour coherence.
Cross section in the specified kinematic range.
The measured 3-jet cross-section w.r.t. the 3-jet invariant mass.
The measured distribution in THETA(P=3).
We present results on dijet production via hard color-singlet exchange in proton-antiproton collisions at root-s = 630 GeV and 1800 GeV using the DZero detector. The fraction of dijet events produced via color-singlet exchange is measured as a function of jet transverse energy, separation in pseudorapidity between the two highest transverse energy jets, and proton-antiproton center-of-mass energy. The results are consistent with a color-singlet fraction that increases with an increasing fraction of quark-initiated processes and inconsistent with two-gluon models for the hard color-singlet.
Colour-singlet fraction at 1.8 TeV.
Ratio of colour-singlet fractions between 630 and 1800 GeV.
Measurements of the proton structure function $F_2$ for $0.6 < Q^2 < 17 {GeV}^2$ and $1.2 \times 10^{-5} < x <1.9 \times 10^{-3}$ from ZEUS 1995 shifted vertex data are presented. From ZEUS $F_2$ data the slopes $dF_2/d\ln Q^2$ at fixed $x$ and $d\ln F_2/d\ln(1/x)$ for $x < 0.01$ at fixed $Q^2$ are derived. For the latter E665 data are also used. The transition region in $Q^2$ is explored using the simplest non-perturbative models and NLO QCD. The data at very low $Q^2$ $\leq 0.65 {GeV}^2$ are described successfully by a combination of generalised vector meson dominance and Regge theory. From a NLO QCD fit to ZEUS data the gluon density in the proton is extracted in the range $3\times 10^{-5} < x < 0.7$. Data from NMC and BCDMS constrain the fit at large $x$. Assuming the NLO QCD description to be valid down to $Q^2\sim 1 {GeV}^2$, it is found that the $q\bar{q}$ sea distribution is still rising at small $x$ and the lowest $Q^2$ values whereas the gluon distribution is strongly suppressed.
F2.
F2.
F2.
Photonic events with large missing energy have been observed in $e^+ e^-$ collisions at centre-of-mass energies of 130, 136 and 183 GeV collected in 1997 using the OPAL detector at LEP. Results are presented for event topologies with a single photon and missing transverse energy or with an acoplanar photon pair. Cross-section measurements are performed within the kinematic acceptance of each selection. These results are compared with the expectations from the Standard Model process $e^+e^-$ $\rightarrow \nu \bar{\nu +}$ photon(s). No evidence is observed for new physics contributions to these final states. Using the data at $\sqrt{s} = 183$ GeV, upper limits on $\sigma$ ($e^+ e^-$ $\rightarrow$ X.Y)*BR(X $\to \textrm{Y}_{\gamma}$) and $\sigma$ ($e^+ e^-$ $\rightarrow$ X.X)*BR$^2$ (X $\to \textrm{Y}_{\gamma}$) are derived for the case of stable and invisible Y. These limits apply to single and pair production of excited neutrinos $(\textrm{X} = \nu^*, \textrm{Y} = \nu)$, to neutralino production $(\textrm{X} = \overline{\chi}^0_2, \textrm{Y} = \overline{\chi}^0_1)$ and to supersymmetric models in which $X = \overline{\chi}^0_1$ and $Y=\overline{\textrm{G}}$ is a light gravitino.
No description provided.
No description provided.
The data for sqrt(s) = 130 and 136 GeV are combination of present data and previous one (see EPJ C2, 607), the data for sqrt(s)=161 and 172 GeV is from thesame publication.
Exclusive production of $\rho^0$ and $J/\psi$ mesons in e^+ p collisions has been studied with the ZEUS detector in the kinematic range $0.25 < Q^2 < 50 GeV^2, 20 < W < 167 GeV$ for the $\rho^0$ data and $2 < Q^2 < 40 GeV^2, 50 < W < 150 GeV$ for the $J/\psi$ data. Cross sections for exclusive $\rho^0$ and $J/\psi$ production have been measured as a function of $Q^2, W$ and $t$. The spin-density matrix elements $r^{04}_{00}, r^1_{1-1}$ and $Re r^{5}_{10}$ have been determined for exclusive $\rho^0$ production as well as $r^{04}_{00}$ and $r^{04}_{1-1}$ for exclusive $J/\psi$ production. The results are discussed in the context of theoretical models invoking soft and hard phenomena.
Exclusive RHO0 electro- and photo- production and cross sections as a function of Q**2 from the BPC data set.
Exclusive RHO0 electro- and photo- production cross section as a function of W from the BPC data set.
Exclusive RHO0 electro- and photo- production cross sections as a function of W from the DIS data set.