Using the CLEO detector at the Cornell Electron Storage Ring, the authors have measured the leptonic branching fractions, Bμμ, of the ϒ(1S), ϒ(2S), and ϒ(3S) to be 2.7±0.3±0.3%, 1.9±1.3±0.5%, and 3.3±1.3±0.7%, respectively. Combining these values of Bμμ with previous measurements of the leptonic widths of these resonances, the authors find the total widths of the ϒ(1S), ϒ(2S), and ϒ(3S) to be 48±4±4, 27±17±6, and 13±4±3 keV.
No description provided.
Inclusive production of (D0, D¯0) and D± mesons have been observed in e+e− annihilation at 29 GeV. The signals correspond to R values of R(D0+D¯0)=3.25±1.2 and R(D++D−)=1.35±0.6. D*± production is also observed via the process D*+→D0π+ and its charge conjugate. The D and D* production rates are compared.
EXTRAPOLATION TO ALL Z.
EXTRAPOLATION TO ALL Z.
EXTRAPOLATION TO ALL Z.
The polarization parameter Pn000, the two-spin parameters Dn0n0, Kn00n, Ds0s0, and Ds0k0, and the three-spin parameters Ms0sn and Ms0kn have been measured for pp elastic scattering at 579 MeV between 34° and 118° center-of-mass scattering angle. The experiment was performed at SIN using a polarized proton beam, a polarized butanol target, and a polarimeter for the measurement of the polarization of the scattered proton. These data form the basis for a complete experimental determination of the scattering amplitudes.
No description provided.
No description provided.
VALUES OF MIXING ANGLE OMEGA (O).
The asymmetry parameter A in π−p elastic scattering at incident pion laboratory kinetic energies Tπ of 98, 238, and 2922 MeV and in π−p charge-exchange scattering π−p→π0n at Tπ=238, 292, and 310 MeV have been measured over a wide range of scattering angles (typically from about 60° to 130° c.m.) with a polarized proton target. The data have been used in an energy-independent phase-shift analysis to improve the precision of the pion-nucleon phase shifts, to set new limits on violation of isospin conservation in the pion-nucleon S wave, and to confirm significant charge dependence in the P32 wave.
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
The reaction π−p→K0K−p has been measured from 50 to 175 GeV/c. The production characteristics of the A2 have been analyzed. We find spin and t dependence similar to lower energies, but the cross section falls rapidly with energy. In a Regge description of π−p→A2−p our data imply a rather small Pomeron-exchange component.
No description provided.
RAW CROSS SECTION WITHIN MASS CUTS.
No description provided.
We have studied the reactionspp→ppπ+π-,K+p→K+pπ+π−π, π+p→ π+,pπ+π− and π−p →π+π− at 147 GeV/c using the 30-inch Fermilab hybrid system. All four reactions were detected with the same apparatus and analyzed in the same way. The energy dependence of the channel cross section was found to beAp−0.6+B for thepp reaction andAp−1+B for the other three. About 90% of the cross section at 147 GeV/c can be accounted for by either beam or target diffraction. Some of the remaining cross section may come from double Pomeron exchange reactions which we tried to isolate. We have tested the hypothesis of a factorizable Pomeron and our data indicates a violation of this hypothesis. We show that the 3π mass enhancement in the mass region 1.2–1.4 GeV is diffractively produced in the π± beam reactions. Fourprong, four-constraint and six-prong, four-constraint cross sections are reported.
No description provided.
No description provided.
CROSS SECTIONS FOR DIFFRACTION DISSOCIATION OF BEAM. FEYNMAN X OF OUTGOING PROTON <-0.96.
Inclusive charged-current interactions of high-energy neutrinos and antineutrinos have been studied with high statistics in a counter experiment at the CERN Super Proton Synchrotron. The energy dependence of the total cross-sections, the longitudinal structure function, and the nucleon structure functionsF2,xF3, and\(\bar q^{\bar v} \) are determined from these data. The analysis of theQ2-dependence of the structure functions is used to test quantum chromodynamics, to determine the scale parameter Λ and the gluon distribution in the nucleon.
ABSOLUTE FLUXES HAVE NOT BEEN MEASURED. NORMALISED TO OLD RESULTS.
STUCTURE FUNCTIONS ARE EVALUATED ASSUMING R=SIG(L)/SIG(T)=0.1 AND M(W) IS INFINITE. NO CORRECTION FOR FERMI MOTION APPLIED. ERRORS ARE STATISTICAL AND SYSTEMATIC POINT-TO-POINT ERRORS. IN ADDITION OVER-ALL SCALE ERROR OF 6 PCT. FOR F2 , 8 PCT. FOR XF3.
STUCTURE FUNCTIONS ARE EVALUATED ASSUMING R=SIG(L)/SIG(T)=0.1 AND M(W) IS INFINITE. NO CORRECTION FOR FERMI MOTION APPLIED. ERRORS ARE STATISTICAL AND SYSTEMATIC POINT-TO-POINT ERRORS. IN ADDITION OVER-ALL SCALE ERROR OF 6 PCT. FOR F2 , 8 PCT. FOR XF3.
Differential cross sections for π − p and pp elastic scattering have been measured at incident momenta ranging from 30 to 345 GeV and in the t range 0.002 (GeV/ c ) 2 ⩽ | t | ⩽ 0.04 (GeV/ c ) 2 . From the analysis of the data, the ratio ϱ ( t = 0) of the real to the imaginary parts of the forward scattering amplitude was determined together with the logarithmic slope b of the diffraction cone.
No description provided.
No description provided.
No description provided.
Charm D-meson production in 360 GeV π − p interactions has been studied using the high-resolution hydrogen bubble chamber LEBC and the European Hybrid Spectrometer. The data show evidence for leading quark effects both in the number of D-meson types and in the Feynman x distributions. The production cross section is of the form d 2 δ d x d p T 2 ∞(1-x) n exp (-ap T 2 ) with n = 2.8±0.8 and a = 1.1±0.3 (GeV/ c ) −2 . The x distribution is, however, compatible with the presence of both central ( n = 6) and leading (n = 1) D / D production. The fraction of D-messons in the leading component is estimated to be ≈30%. The rapidity gap between members of reconstructed charm pairs is small compared to the available rapidity range. The inclusive cross section for single D-messons in the forward direction is: δ(D/ D )=(40 8 +15 )μ b ( for x>0) .
No description provided.
Inclusive neutrino and antineutrino charged current interactions were studied in the CHARM detector exposed to neutrino and antineutrino Wide Band Beams of the CERN 400 GeV SPS. The x and Q 2 dependence of the structure functions F 2 and xF 3 and of the antiquark momentum distribution q were determined. The data have been interpreted in terms of QCD theory using the Furmanski-Petronzio method. In this way we have determined Λ LO = [190 −40 +70 ( stat ) ± 70 ( syst .)] MeV and the structure functions of quarks and gluons without specific assumptions on their analytic dependence. The results agree with previous experiments which relied on model assumptions in the analysis. We conclude that the model independent simultaneous analysis of the xF 3 , F 2 , q structure functions gives a more reliable determination of the gluon distribution in the nucleon.
No description provided.
HERE THE QBAR IS D2(SIG(ANU))/DX/DY - (1-Y)**2*D2(SIG(NU))/DX/DY.