The differential cross section for π ± p elastic scattering below 2 GeV/ c has been measured at small forward pion angles by an electronics experiment. The interference effects observed between the Coulomb and the nuclear interaction have been used to determine the magnitude and sign of the real parts of the π ± p forward scattering amplitude. The latter are compared to the values predicted by the dispersion relations.
.
.
.
The angular distribution of π + p elastic scattering has been measured at an incident momentum of 10 GeV/ c . Nearly the whole angular range was covered in one experimental set-up. The pronounced dip at − t = 2.8 (GeV/ c ) 2 , observed at lower momenta, has diminished and is essentially a shoulder at 10 GeV/ c . The other structure at larger momentum transfers are also different in detail from what we observed at 5 GeV/ c . In the 90° c.m. region the differential cross-section is approximately one nb/(GeV/ c ) 2 , which is more than two orders of magnitude lower than at 5 GeV/ c .
THESE DATA ARE REPORTED MORE FULLY IN C. BAGLIN ET AL., NP B98, 365 (1975).
Simple inclusive cross sections for p p interactions at 12 GeV/ c are given. The data cover prong cross sections, V 0 production and resonances. Separation has been made into annihilation and non-annihilation modes. Some implications of the data are discussed. It is pointed out that the ratios of cross sections for ϱ 0 π − production are independent of incident antiproton momentum in p p annihilation processes, and that data at the highest available pp energies (ISR) tend to the same value.
NORMALIZED TO A TOTAL CROSS SECTION OF 51.7 +- 0.8 MB.
Forward differential cross sections for π − p elastic scattering at 1.0, 1.5 and 2.0 GeV/ c show that the square of the imaginary parts of the nuclear scattering agrees with the optical theorem prediction within ±3%, when averaged over the three momenta.
No description provided.
Elastic cross-section measurements are presented for π ± −p at 20 GeV/ c and π − −p at 30 GeV/ c incident momenta in the large angle region (50° to 90° in the c.m. system). The data are compared with published lower energy elastic cross sections. A test is made of the dimensional counting rules for π ± −p elastic scattering and some indication of a deviation from this rule is observed in the π − −p case. A comparison is also made with the predictions of the constituent interchange model. Although the broad features of the predictions are confirmed, there are some important discrepancies. Finally, the predictions of the model due to Preparata and Soffer are also compared with the new data.
No description provided.
THE UPPER LIMIT QUOTED WHEN NO EVENTS OBSERVED IS THE CROSS SECTION CORRESPONDING TO ONE DETECTED EVENT.
THE UPPER LIMIT QUOTED WHEN NO EVENTS OBSERVED IS THE CROSS SECTION CORRESPONDING TO ONE DETECTED EVENT.
Experimental results are presented on $\pi^+ p$ interactions at 850 MeV/c incident momentum. Cross sections for the various reactions are given. The elastic differential cross section has been fitted to a polynomial in, cos$\theta$ and the resulting coefficients are compared to results at neighbouring incident momenta. For the one-pion-production reactions, the (N$\pi$) effective mass distributions and the ratio of $\pi^0$ to $\pi^+$ production have been compared to the predictions of several theoretical models.
No description provided.
Hoping to find resonant structures in the momentum dependence of π − p elastic scattering we have measured the differential cross section for this reaction at c.m. angles near 90°. An intense pion beam (≈ 10 7 π /s) has been used, together with a high incident momentum resolution (d P / P ≈ 2 × 10 −4 ), to scan the region of laboratory momenta from 5.75 to 13.02 GeV/ c (c.m. energy from 3.42 to 5.03 GeV). The sensitivity attained by the experiment is such that signals would have been seen corresponding to the formation of non-strange baryon resonances having width larger than ≈ 0.1 MeV and elasticity larger than a few per cent. Within these limits no resonances were sighted.
ENERGY SCAN IN BINS OF D(PLAB)/PLAB OF 5*10**-4 AT FOUR FIXED ANGLES (COS(THETA) = -0.4 TO 0.4).
Differential cross sections for pi- p and pi+ p elastic scattering were measured at five energies between 19.9 and 43.3 MeV. The use of the CHAOS magnetic spectrometer at TRIUMF, supplemented by a range telescope for muon background suppression, provided simultaneous coverage of a large part of the full angular range, thus allowing very precise relative cross section measurements. The absolute normalisation was determined with a typical accuracy of 5 %. This was verified in a simultaneous measurement of muon proton elastic scattering. The measured cross sections show some deviations from phase shift analysis predictions, in particular at large angles and low energies. From the new data we determine the real part of the isospin forward scattering amplitude.
Elastic PI- P cross section for incident kinetic energy 43.3 MeV for the rotated target data. Errors shown are statistical only.
Elastic PI- P cross section for incident kinetic energy 43.3 MeV. Errors shown are statistical only.
Elastic PI- P cross section for incident kinetic energy 37.1 MeV. Errors shown are statistical only.
Measurements of the differential elastic cross sections for π − p scattering at incident momenta of 20 and 50 GeV c and π + p at 50 GeV c in the momentum transfer range 0.7 < |t|; < 8.0 ( GeV c ) 2 are presented. The data are compared with various models of elastic scattering.
No description provided.
No description provided.
No description provided.
The angular distribution π+-p at 1.0 GeV was determined on the basis of l032 events measured in a propane bubble chamber. Comparison is made with data of 820 and 900 MeV and with angular distributions π−+p at similar energies.
No description provided.