Energy, charge and strangeness flow inK+p interactions at 32 and 70 GeV/c, and π+p interactions at 32 GeV/c are studied in terms of the angular variable λ=|x|/pT. The data ondQ/dλ anddE/dλ show only a weak indication of scale breaking between 32 and 70 GeV/c. For inclusive “non-diffractive”, inclusive “diffractive” and exclusive “non-diffractive” jets, the fraction of charge in any angular region ΔΩ away from the central region is found to be proportional to the energy fraction in the same interval. The data ondQ/dE versus λ are compatible with some versions of dual-sheet models and agree also with the LUND Monte-Carlo model. The data are also compared with\(v(\bar v)p\) interactions in BEBC. In exclusive channels the average ratiodQ/dS=0.78±0.04 is consistent, in the framework of fragmentation models, with a larger probability for the fragmentation of the\(\bar s\)-valence quark than theu-valence quark in theK+-meson.
CHARGE FLOW IN NONDIFFRACTIVE PROTON-LIKE AND KAON-LIKE JETS.
CHARGE FLOW IN NONDIFFRACTIVE PROTON-LIKE AND KAON-LIKE JETS.
CHARGE FLOW IN NONDIFFRACTIVE PROTON-LIKE AND KAON-LIKE JETS.
Inclusive and semi-inclusive production of Λ and\(\bar \Lambda\) inK+p interactions is studied at an incident momentum of 70 GeV/c. Cross sections and single particle distributions are presented and compared with data at lower energies. Scaling is observed between 32 and 70 GeV/c in the Feynmanx variable in the target and the beam fragmentation regions for Λ and\(\bar \Lambda\) inclusive production respectively. An increase of Λ (\(\bar \Lambda\)) production is observed in the beam (target) fragmentation regions, whereas the data at 70 and 32 GeV/c are reasonably close in the central region. The dependence of the Λ(\(\bar \Lambda\)) polarization as a function ofx is measured and found to be in general agreement with the results at 32 GeV/c. The (Λ\(\bar \Lambda\)) pair production cross section increases significantly from 32 to 70 GeV/c. The Λ and\(\bar \Lambda\) production associated with an identified proton is also studied.
No description provided.
No description provided.
No description provided.
Inclusive charged pion production is studied in an exposure of BEBC, filled with hydrogen, to an incidentK+ beam of 70 GeV/c. Total cross sections for pion production and inclusive longitudinal and transverse momentum distributions of π−'s and of positive particles are presented and compared with data at lower energies. Earlier evidence for scaling in the fragmentation regions is confirmed. The central region π− cross section increases proportionally topLAB−1/4; positive particles show almost no energy dependence atx=0. Particle ratios π+/π− are studied as a function ofx andy* and a comparison with 70 GeV/cK−p data is made. Analysis of structure functions for (ππ) pairs and of particle production associated with π± triggers at large |x| in the context of quark/parton models, provides qualitative evidence for the diquark-quark structure of the proton.
No description provided.
No description provided.
None
.
.
.
The inclusive production of neutral kaons in 70 GeV/ c K + p interactions is studied with the CERN BEBC bubble chamber. The (semi-)inclusive cross sections are interpreted in terms of the various strangeness channels leading to neutral kaon production. The invariant inclusive cross section for kaon production is studied as a function of p t 2 and the Feynman variable x . The latter distributions are considered both “raw” and corrected for the presence of K 0 's resulting from K ∗ decay. They are compared with the predictions expected from the Regge-Mueller formalism, the recombination model and fragmentation models.
No description provided.
No description provided.
We present results on inclusive φ meson production in K + p interactions at 70 GeV/ c in the kaon fragmentation x >0.2 region. Comparison with other data on φ meson production in K ± and p induced reactions provides evidence that the strange valence-quark fragmentation or recombination processes play the dominant role in the K ± → φ transitions. Arguments are presented that the kaon valence strange s -quark carries a much higher momentum fraction than the u-quark. Evidence for the previously observed narrow φπ + state at mass ∼2.1 GeV is discussed.
.
.
.
We present results on the inclusive polarization of Λ hyperons produced in K + p interactions at 32 and 70 GeV/ c . A large positive Λ polarization is observed in the kaon fragmentation region. The polarization is energy independent, increases strongly with increasing x , but shows essentially no p T -dependence.
.
.
.
Results are presented onK+p elastic scattering and on the reactionK+p→K+pπ+π− at 70 GeV/c. For the
.
.
.
Cross sections and charged multiplicity distributions forK+p interactions at 70 GeV/c are presented and compared withK+p data at other energies. Comparisons are also made with available π+p,pp, andK−p data.
No description provided.
No description provided.
Earlier measurements at LEP of isolated hard photons in hadronic Z decays, attributed to radiation from primary quark pairs, have been extended in the ALEPH experiment to include hard photon productioninside hadron jets. Events are selected where all particles combine democratically to form hadron jets, one of which contains a photon with a fractional energyz≥0.7. After statistical subtraction of non-prompt photons, the quark-to-photon fragmentation function,D(z), is extracted directly from the measured 2-jet rate. By taking into account the perturbative contributions toD(z) obtained from anO(ααs) QCD calculation, the unknown non-perturbative component ofD(z) is then determined at highz. Provided due account is taken of hadronization effects nearz=1, a good description of the other event topologies is then found.
2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).
2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).
2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).