The GlueX experiment at Jefferson Lab has observed $p\bar{p}$ and, for the first time, $Λ\barΛ$ and $p\barΛ$ photoproduction from a proton target at photon energies up to 11.6 GeV. The angular distributions are forward peaked for all produced pairs, consistent with Regge-like $t$-channel exchange. Asymmetric wide-angle anti-baryon distributions show the presence of additional processes. In a phenomenological model, we find consistency with a double $t$-channel exchange process where anti-baryons are created only at the middle vertex. The model matches all observed distributions with a small number of free parameters. In the hyperon channels, we observe a clear distinction between photoproduction of the $Λ\barΛ$ and $p\barΛ$ systems but general similarity to the $p\bar{p}$ system. We report both total cross sections and cross sections differential with respect to momentum transfer and the invariant masses of the created particle pairs. No narrow resonant structures were found in these reaction channels. The suppression of $s\bar{s}$ quark pairs relative to $d\bar{d}$ quark pairs is similar to what has been seen in other reactions.
Measured $\frac{d\sigma}{dm_{\Lambda\bar{\Lambda}}}~[\mathrm{nb/GeV}]$ for reaction $\gamma p\to \{\Lambda \bar{\Lambda}\} p$ including data of $6.5 \leq E_{\gamma} \leq 11.5$ [GeV], splitted in 10 energy bins (each as a column in the table). The observable $m_{\Lambda\bar{\Lambda}}$ is in unit of $[\mathrm{nb/GeV}]$ and is divided into bins of width 0.05 $[\mathrm{GeV}]$ (each as a row in the table). The global systematic uncertainty is 19% (not included in the table), with contributions of 5% from kinematic fitting, 10% from data selection, 5% from flux normalization, 13% from tracking efficiency, 3% from model dependence, and 6% from run-period variations.
Measured $\frac{d\sigma}{dm_{p\bar{\Lambda}}}~[\mathrm{nb/GeV}]$ for reaction $\gamma p\to \{p \bar{\Lambda}\} \Lambda$ including data of $6.5 \leq E_{\gamma} \leq 11.5$ [GeV], splitted in 10 energy bins (each as a column in the table). The observable $m_{p\bar{\Lambda}}$ is in unit of $[\mathrm{nb/GeV}]$ and is divided into bins of width 0.1 $[\mathrm{GeV}]$ (each as a row in the table). The global systematic uncertainty is 22% (not included in the table), with contributions of 2% from kinematic fitting, 10% from data selection, 5% from flux normalization, 15% from tracking efficiency, 3% from model dependence, and 10% from run-period variations.
Measured $\frac{d\sigma}{dm_{p\bar{p}}}~[\mathrm{nb/GeV}]$ for reaction $\gamma p\to \{p \bar{p}\} p$ including data of $3.5 \leq E_{\gamma} \leq 11.5$ [GeV], splitted in 15 energy bins (each as a column in the table). The observable $m_{p\bar{p}}$ is in unit of $[\mathrm{nb/GeV}]$ and is divided into bins of width 0.044 $[\mathrm{GeV}]$ (each as a row in the table). The global systematic uncertainty is 13% (not included in the table), with contributions of 8% from kinematic fitting, 4% from data selection, 5% from flux normalization, 8% from tracking efficiency, 3% from model dependence, and 1% from run-period variations.
The measurement of $\Sigma^{+}$ production in pp collisions at $\sqrt{s} = 13$ TeV is presented. The measurement is performed at midrapidity in both minimum-bias and high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV. The $\Sigma^{+}$ is reconstructed via its weak-decay topology in the decay channel $\Sigma^{+} \rightarrow {p} + \pi^{0}$ with $\pi^{0} \rightarrow \gamma + \gamma$. In a novel approach, the neutral pion is reconstructed by combining photons that convert in the detector material with photons measured in the calorimeters. The transverse-momentum ($p_{T}$) distributions of the $\Sigma^{+}$ and its rapidity densities d$N/$dy in both event classes are reported. The $p_{T}$ spectrum in minimum-bias collisions is compared to QCD-inspired event generators. The ratio of $\Sigma^{+}$ to previously measured $\Lambda$ baryons is in good agreement with calculations from the Statistical Hadronization Model. The high efficiency and purity of the novel reconstruction method for $\Sigma^{+}$ presented here will enable future studies of the interaction of $\Sigma^{+}$ with protons in the context of femtoscopic measurements, which could be crucial for understanding the equation of state of neutron stars.
$p_\mathrm{T}$-differential production yield of $\Sigma^+$ and $\bar{\Sigma}^-$ baryons in the high-multiplicity triggered pp collisions at $\sqrt{{s}}=13~\mathrm{{TeV}}$ in the rapidity interval $|y|<0.8$.
$p_\mathrm{T}$-differential production yield of $\Sigma^+$ and $\bar{\Sigma}^-$ baryons in the minimum-bias triggered pp collisions at $\sqrt{{s}}=13~\mathrm{{TeV}}$ in the rapidity interval $|y|<0.8$.
The first measurement at midrapidity ($|y| < 0.5$) of the production yield of the strange-charm baryons $Ξ_c^+$ and $Ξ_c^0$ as a function of charged-particle multiplicity in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ALICE experiment at the LHC is reported. The $Ξ_c^+$ baryon is reconstructed via the $Ξ_c^+ \rightarrow Ξ^-π^+π^+$ decay channel in the range $4 < p_{\rm T} < 12$ GeV/$c$, while the $Ξ_c^0$ baryon is reconstructed via both the $Ξ_c^0 \rightarrow Ξ^-π^+$ and $Ξ_c^0 \rightarrow Ξ^-e^+ν_e$ decay channels in the range $2 < p_{\rm T} < 12$ GeV/$c$. The baryon-to-meson ($Ξ_c^{0,+}/D^0$) and the baryon-to-baryon ($Ξ_c^{0,+}/Λ_c^+$) production yield ratios show no significant dependence on multiplicity. In addition, the observed yield ratios are not described by theoretical predictions that model charm-quark fragmentation based on measurements at $e^+e^-$ and $e^-$p colliders, indicating differences in the charm-baryon production mechanism in pp collisions. A comparison with different event generators and tunings, including different modelling of the hadronisation process, is also discussed. Moreover, the branching-fraction ratio of BR($Ξ_c^0 \rightarrow Ξ^-e^+ν_e$)/BR($Ξ_c^0 \rightarrow Ξ^-π^+$) is measured as 0.825 $\pm$ 0.094 (stat.) $\pm$ 0.081 (syst.). This value supersedes the previous ALICE measurement, improving the statistical precision by a factor of 1.6.
$p_{\rm T}$-differential per-event yield of prompt $\Xi_c^0$ baryons measured in the different multiplicity classes.
$p_{\rm T}$-differential per-event yield of prompt $\Xi_c^+$ baryons measured in the different multiplicity classes.
Ratio between the prompt $\Xi_c^0$ baryons in a multiplicity class to the multiplicity-integrated (INEL $>$ 0) class.
We present the first measurements of the forward and midrapidity $η$-meson cross sections from $p$$+$$p$ collisions at $\sqrt{s}=500$ and $510$~GeV, respectively. We also report the midrapidity $η/π^0$ ratio at 510 GeV. The forward cross section is measured differentially in $η$-meson transverse momentum ($p_T$) from 1.0 to 6.5~GeV/$c$ for pseudorapidity $3.0<|η|<3.8$. The midrapidity cross section is measured from 3.5 to 44 GeV/$c$ for pseudorapidity $|η|<0.35$. Both cross sections serve as critical inputs to an updated global analysis of the $η$-meson fragmentation functions.
The invariant differential cross section of $\eta$ mesons at forward rapidity in pp collisions at center-of-mass energy 500 GeV.
The invariant differential cross section of $\eta$ mesons at central rapidity in pp collisions at center-of-mass energy 510 GeV.
The ratio of $\eta$ to $\pi^0$ cross sections at central rapidity in pp collisions at center-of-mass energy 510 GeV.
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low-mass vector-meson ($ω+ρ$ and $ϕ$) production through the dimuon decay channel at forward rapidity $(1.2<|\mbox{y}|<2.2)$ in $p$$+$$p$ and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$~GeV. The low-mass vector-meson yield and nuclear-modification factor were measured as a function of the average number of participating nucleons, $\langle N_{\rm part}\rangle$, and the transverse momentum $p_T$. These results were compared with those obtained via the kaon decay channel in a similar $p_T$ range at midrapidity. The nuclear-modification factors in both rapidity regions are consistent within the uncertainties. A comparison of the $ω+ρ$ and $J/ψ$ mesons reveals that the light and heavy flavors are consistently suppressed across both $p_T$ and ${\langle}N_{\rm part}\rangle$. In contrast, the $ϕ$ meson displays a nuclear-modification factor consistent with unity, suggesting strangeness enhancement in the medium formed.
The differential cross sections of $\omega+\rho$ mesons as a function of $p_T$ in $p+p$ collisions. The systematic uncertainties of type-A (uncorrelated) are combined with statistical uncertainties in quadrature and are labeled as stat. Type-B (correlated) systematic uncertainties are listed as sys.
The differential cross sections of $\phi$ meson as a function of $p_T$ in $p+p$ collisions. The systematic uncertainties of type-A (uncorrelated) are combined with statistical uncertainties in quadrature and are labeled as stat. Type-B (correlated) systematic uncertainties are listed as sys.
The invariant yields of $\phi$ and $\omega+\rho$ mesons as a function of $p_T$ in Au+Au collisions. The systematic uncertainties of type-A (uncorrelated) are combined with statistical uncertainties in quadrature and are labeled as stat. Type-B (correlated) systematic uncertainties are listed as sys.
The jet cross-section and jet-substructure observables in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV were measured by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC). Jets are reconstructed from charged-particle tracks and electromagnetic-calorimeter clusters using the anti-$k_{t}$ algorithm with a jet radius $R=0.3$ for jets with transverse momentum within $8.0<p_T<40.0$ GeV/$c$ and pseudorapidity $|η|<0.15$. Measurements include the jet cross section, as well as distributions of SoftDrop-groomed momentum fraction ($z_g$), charged-particle transverse momentum with respect to jet axis ($j_T$), and radial distributions of charged particles within jets ($r$). Also meaureed was the distribution of $ξ=-ln(z)$, where $z$ is the fraction of the jet momentum carried by the charged particle. The measurements are compared to theoretical next-to and next-to-next-to-leading-order calculatios, PYTHIA event generator, and to other existing experimental results. Indicated from these meaurements is a lower particle multiplicity in jets at RHIC energies when compared to models. Also noted are implications for future jet measurements with sPHENIX at RHIC as well as at the future Electron-Ion Collider.
The jet differential cross section as a function of jet $p_T$. Statistical uncertainties are typically smaller than the data points while systematic uncertainties are shown with boxes. An overall normalization systematic of 7% is not included in the point-by-point systematic uncertainties.
Distribution of the SoftDrop groomed momentum fraction $z_g$ for different jet $p_T$ bins. Standard SoftDrop parameters were used ($z_{cut}<0.1$ and $\beta=0$).
$\xi$ distributions for different jet $p_T$ bins.
Ultrarelativistic heavy-ion collisions create a quark-gluon plasma (QGP), a hot and dense state of strongly interacting QCD matter. In ultracentral collisions, the QGP volume remains nearly constant event-by-event, while its total entropy can fluctuate due to quantum effects, leading to temperature variations. These features allow the correlation between the mean transverse momentum $(\langle p_{\mathrm{T}} \rangle)$ of charged hadrons and their multiplicity to serve as a probe of the QGP's speed of sound, $c_{s}$. This study extracts $c_{s}$ by analyzing the relative increase in $\langle p_{\mathrm{T}} \rangle$ with respect to the charged-particle density $(\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta \rangle)$ at midrapidity in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$, using data from the ALICE detector. Centrality is determined with estimators based on multiplicity and transverse energy, applying a pseudorapidity gap to reduce selection biases. The extracted value of $c_{s}^{2}$ is found to strongly depend on the employed centrality estimator and ranges between $0.1146 \pm 0.0028 \,\mathrm{(stat.)} \pm 0.0065 \,\mathrm{(syst.)}$ and $0.4374 \pm 0.0006 \mathrm{(stat.)} \pm 0.0184 \mathrm{(syst.)}$ in natural units. Additionally, the event-by-event $[p_{\mathrm{T}}]$ distribution is studied through its variance, skewness, and kurtosis. A pronounced decrease in the self-normalized variance and a peak followed by a drop in skewness suggest the suppression of impact-parameter fluctuations in ultracentral collisions. These observations provide new insights into the thermodynamic properties and initial-state fluctuations of the QGP.
Average number of participating nucleons ($\langle N_{\mathrm{part}} \rangle$) as a function of centrality percentile in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$. Data points are shown for centrality estimators based on $N_{\mathrm{ch}}$, ${N_{\mathrm{tracklets}}}$, and $E_{\mathrm{T}}$ within $|\eta|\leq 0.8$.
Average number of participating nucleons ($\langle N_{\mathrm{part}} \rangle$) as a function of centrality percentile in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$. Data points are shown for centrality estimator based on $N_{\mathrm{ch}} \in$ $-3.7<\eta<-1.7$ and $2.8 < \eta <5.1$.
Normalized $p_{\mathrm{T}}$-spectrum ratio as a function as a function of centrality in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$. Data points are shown for centrality estimator based on $N_{\mathrm{ch}} \in$ $0.5 \leq |\eta|\leq 0.8$.
The total cross section for Compton scattering off atomic electrons, $γ+e\rightarrowγ'+e'$, was measured using photons with energies between 6.5 and 11.1 GeV incident on a $^9$Be target as part of the PrimEx-eta experiment in Hall D at Jefferson Lab. This is the first measurement of this fundamental QED process within this energy range. The total uncertainties of the cross section, combining the statistical and systematic components in quadrature, averaged to 3.4% across all energy bins. This not only demonstrates the capability of this experimental setup to perform precision cross-section measurements at forward angles but also allows us to compare with state-of-the-art QED calculations.
$\gamma +e^- \rightarrow \gamma + e^-$ total cross section in bins of photon beam energy. The first uncertainties are statistical, and the second are systematic.
This work reports femtoscopic correlations of p$-$p ($\bar{\rm p}-\bar{\rm p}$) and p$-$d ($\bar{\rm p}-\bar{\rm d}$) pairs measured in Pb$-$Pb collisions at center-of-mass energy $\sqrt{s_{\rm NN}}$ = 5.02 TeV by the ALICE Collaboration. A fit to the measured proton-proton correlation functions allows one to extract the dependence of the nucleon femtoscopic radius of the particle-emitting source on the pair transverse mass ($m_\text{T}$) and on the average charge particle multiplicity $\langle\text{dN}_\text{ch}/\text{d}\eta\rangle^{1/3}$ for three centrality intervals (0$-$10$\%$, 10$-$30$\%$, 30$-$50$\%$). In both cases, the expected power-law and linear scalings are observed, respectively. The measured p$-$d correlations can be described by both two- and three-body calculations, indicating that the femtoscopy observable is not sensitive to the short-distance features of the dynamics of the p$-$(p$-$n) system, due to the large inter-particle distances in Pb$-$Pb collisions at the LHC. Indeed, in this study, the minimum measured femtoscopic source sizes for protons and deuterons have a minimum value at $2.73^{+0.05}_{-0.05}$ and $3.10^{+1.04}_{-0.86}$ fm, respectively, for the 30$-$50$\%$ centrality collisions. Moreover, the $m_{\rm{T}}$-scaling obtained for the p$-$p and p$-$d systems is compatible within 1$\sigma$ of the uncertainties. These findings provide new input for fundamental studies on the production of light (anti)nuclei under extreme conditions.
proton-proton (same charge) correlation function for centrality 0-10% from Pb-Pb collisions at 5020 GeV
proton-proton (same charge) correlation function for centrality 10-30% from Pb-Pb collisions at 5020 GeV
proton-proton (same charge) correlation function for centrality 30-50% from Pb-Pb collisions at 5020 GeV
This Letter presents measurements of long-range transverse-momentum correlations using a new observable, $v_{0}(p_\mathrm{T})$, which serves as a probe of radial flow and medium properties in heavy-ion collisions. Results are reported for inclusive charged particles, pions, kaons, and protons across various centrality intervals in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV, recorded by the ALICE detector. A pseudorapidity-gap technique, similar to that used in anisotropic-flow studies, is employed to suppress short-range correlations. At low $p_\mathrm{T}$, a characteristic mass ordering consistent with hydrodynamic collective flow is observed. At higher $p_\mathrm{T}$ ($> 3$ GeV/$c$), protons exhibit larger $v_{0}(p_\mathrm{T})$ than pions and kaons, in agreement with expectations from quark-recombination models. These results are sensitive to the bulk viscosity and the equation of state of the QCD medium formed in heavy-ion collisions.
The $p_\mathrm{T}$ dependence of $v_{0}(p_\mathrm{T})$ for inclusive charged particles is measured in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV within the 10$–$20% centrality interval, using a two-particle correlation method with a pseudorapidity gap of $\Delta\eta = 0.4$.
The $p_\mathrm{T}$ dependence of $v_{0}(p_\mathrm{T})$ for inclusive charged particles is measured in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV within the 30$–$40% centrality interval, using a two-particle correlation method with a pseudorapidity gap of $\Delta\eta = 0.4$.
The $p_\mathrm{T}$ dependence of $v_{0}(p_\mathrm{T})$ for inclusive charged particles is measured in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV within the 60$–$70% centrality interval, using a two-particle correlation method with a pseudorapidity gap of $\Delta\eta = 0.4$.