A charge hyperon beam has been brought into operation at the CERN SPS. Particles are identified by a DISC Čerenkov counter, and decay products are analysed by a magnetic spectrometer. Cross sections for the inclusive production of π + , K + , p , Σ + , Σ − , ζ − , d, and π − , K − , p , Σ + , Σ − , ζ − , ω − , d in the forward direction have been measured at laboratory momenta between 70 and 130 GeV/ c . This range of momenta corresponds to 0.35 ⩽ x ⩽ 0.66 for an incident proton momentum of 200 GeV/ c . Antihyperon ( Σ − , ζ − , Σ + ) and Σ + and ω − fluxes have been measured for the first time in a hyperon beam.
No description provided.
No description provided.
No description provided.
The reaction p p → π − π + has been studied at 10.1 GeV/ c in the − t interval from 0.15 to 1.5 (GeV/ c ) 2 . A line-reversal comparison with backward elastic scattering π + p → p π + shows good agreement for − t > 0.3 (GeV/ c ) 2 .
No description provided.
No description provided.
Evidence is presented for production of Ξ* resonances, decaying into Ξπ, Ξ(1530)π, ΛK¯, and ΣK¯, in K−p interactions at 2.87 Gev/c. The data represent final combined results from a 30-events/μb hydrogen exposure and an 18-events/μb exposure in deuterium designed to study Ξ* production in the mass interval 1.46-2.07 GeV/c2. In addition to Ξ(1820) and Ξ(1940), signals have been observed at masses of 1630 MeV/c2 and 1860 MeV/c2 decaying into Ξ−π+ and YK¯, respectively. Reaction cross sections have been measured for all final states containing two visible signs of strangeness, and for the final states ΛK−K+ and Σ0K−K+.
CROSS SECTIONS ARISING FROM VARIOUS TOPOLOGIES.
K- P CROSS SECTIONS FROM DEUTERIUM TARGET EXPERIMENT. RESULTS ARE IN GOOD AGREEMENT WITH THE HYDROGEN DATA.
No description provided.
We studied K+p interactions at 100 GeV with the Fermi National Accelerator Laboratory 30-in. hydrogen bubble chamber and associated spark-chamber system. We find σtot(K+p)=18.7±1.8 mb and σel(K+p)=2.0±0.4 mb. We present the charged-multiplicity distribution and its moments, and the charge-transfer distribution. The average inelastic charged multiplicity is 〈nc〉=6.65±0.31 and the two-charged-particle correlation functions are f2cc=4.52±1.32 and f2−−=0.47±0.35.
No description provided.
No description provided.
No description provided.
|Tz|=32Δ(1238) systems are studied from the standpoint of direct production utilizing experimental data on the reactions pp→pπ+n, pp→pπ+π−p, pp→pπ+π−π0p, and pp→pπ+π−π+n. Resonance-production total and differential cross sections are presented, in addition to the decay density-matrix elements. It is demonstrated that the experimentally defined Δ(1238) systems are not characterized solely by spin-parity 32+, and that corresponding elements of the density matrices of both pπ+ and π−n cases generally behave in a similar manner with increasing c.m. angle. Additional detailed studies of the t-channel moments are presented for peripherally produced πN systems as a function of both c.m. angle and πN invariant mass. Dynamical differences are observed between the pπ+ and nπ− moments for the very peripheral data. One-pion-exchange-model predictions are compared with the peripheral pπ+ moments and with several invariant-mass distributions from the pp→pπ+π−p data. Complications arising from the presence of two pπ+ combinations in the four- and five-body final-state data are discussed.
No description provided.
None
No description provided.
Measurements have been made of the total charge-exchange cross section π − p to π 0 n over the laboratory kinetic energy range 90 to 290 MeV. The data have an absolute accuracy of typically 1%, and have here been used to determine the pion-nucleon P 13 phase shift.
QUADRATIC INTERPOLATION.
No description provided.
No description provided.
We have studied the 2 π 0 final states in the reaction π + d → π 0 π 0 p(p) at 2.15 GeV/ c in a 2 million picture exposure of the PPA rapid cycling deuterium bubble chamber. Two tantalum plates were added to the bubble chamber to convert γ rays which were kinematically constrained to a 2 π 0 hypothesis. The 2 π 0 mass spectrum is observed to saturate s-wave unitarity in the ππ mass region between 0.6 and 0.9 GeV/ c 2 , clearly favoring the ‘up-down’ or broad resonance solution for s-wave, I = 0, ππ scattering.
No description provided.
None
No description provided.
No description provided.
No description provided.