Date

A Measurement of the Branching Fraction of the Decay $\Upsilon$ (1s) $\to \tau^+ \tau^-$

The CLEO collaboration Giles, R. ; Hassard, J. ; Hempstead, M. ; et al.
Phys.Rev.Lett. 50 (1983) 877, 1983.
Inspire Record 188803 DOI 10.17182/hepdata.20525

The branching fraction for the decay of the ϒ(1S) into τ paris has been measured to be (3.4±0.4±0.4)%. This result agrees with the previously measured branching ratio of the decay into muon pairs.

2 data tables

VISIBLE CROSS SECTIONS IN THE PEAK.

No description provided.


ENERGY VARIATION OF THE ANALYZING POWER IN THE REACTION P (polarized) P ---> D PI+

Saha, A. ; Seth, K.K. ; Kielczewska, D. ; et al.
Phys.Rev.Lett. 51 (1983) 759-762, 1983.
Inspire Record 196398 DOI 10.17182/hepdata.20478

Precision measurements of the analyzing powers for the reaction ppol+p→d+π+ have been made at ≃ 550, 600, 650, 700, and 800 MeV. The data have been analyzed in terms of Legendre polynomials. It is found that excitation functions for both even and odd Legendre coefficients exhibit very similar resonant behaviors. It is concluded that the triplet amplitudes are as strongly dominated by the Δ(1232) as the well-known singlet amplitude, D21, and that the data do not exhibit any anomalous behavior suggestive of dibaryon resonances.

1 data table

No description provided.


A Measurement of the Leptonic Branching Ratios of the $\Upsilon$ (1s), $\Upsilon$ (2s), and $\Upsilon$ (3s)

The CLEO collaboration Andrews, D. ; Avery, P. ; Berkelman, Karl ; et al.
Phys.Rev.Lett. 50 (1983) 807, 1983.
Inspire Record 188805 DOI 10.17182/hepdata.20536

Using the CLEO detector at the Cornell Electron Storage Ring, the authors have measured the leptonic branching fractions, Bμμ, of the ϒ(1S), ϒ(2S), and ϒ(3S) to be 2.7±0.3±0.3%, 1.9±1.3±0.5%, and 3.3±1.3±0.7%, respectively. Combining these values of Bμμ with previous measurements of the leptonic widths of these resonances, the authors find the total widths of the ϒ(1S), ϒ(2S), and ϒ(3S) to be 48±4±4, 27±17±6, and 13±4±3 keV.

1 data table

No description provided.


Electroweak Effects in $e^+ e^- \to \mu^+ \mu^-$ at 29-{GeV}

Fernandez, E. ; Ford, William T. ; Read, Alexander L. ; et al.
Phys.Rev.Lett. 50 (1983) 1238, 1983.
Inspire Record 188749 DOI 10.17182/hepdata.20560

A measurement of the cross section for production of collinear muon pairs based upon a sample of about 3000 events observed in the MAC detector at the storage ring PEP is presented. From the angular asymmetry Aμμ=0.076±0.018 the axial-vector weak neutral coupling is found to be given by gAegAμ=0.31±0.08.

2 data tables

Data on non-collinearity and angular distribution.

Asymmetry measurement based on extrapolation of number of events to 4 PI acceptance.


The Reactions $pp \to pp$ $\pi^+ \pi^-, K^+ p \to K^+ p$ $\pi^+ \pi^-$, $\pi^+ p \to \pi^+ p$ $\pi^+ \pi^-$ and $\pi^- p \to \pi^+ \pi^-$ at 147 GeV/c

Brick, D.H. ; Rudnicka, H. ; Shapiro, A.M. ; et al.
Z.Phys.C 19 (1983) 1-9, 1983.
Inspire Record 194363 DOI 10.17182/hepdata.16321

We have studied the reactionspp→ppπ+π-,K+p→K+pπ+π−π, π+p→ π+,pπ+π− and π−p →π+π− at 147 GeV/c using the 30-inch Fermilab hybrid system. All four reactions were detected with the same apparatus and analyzed in the same way. The energy dependence of the channel cross section was found to beAp−0.6+B for thepp reaction andAp−1+B for the other three. About 90% of the cross section at 147 GeV/c can be accounted for by either beam or target diffraction. Some of the remaining cross section may come from double Pomeron exchange reactions which we tried to isolate. We have tested the hypothesis of a factorizable Pomeron and our data indicates a violation of this hypothesis. We show that the 3π mass enhancement in the mass region 1.2–1.4 GeV is diffractively produced in the π± beam reactions. Fourprong, four-constraint and six-prong, four-constraint cross sections are reported.

6 data tables

No description provided.

No description provided.

CROSS SECTIONS FOR DIFFRACTION DISSOCIATION OF BEAM. FEYNMAN X OF OUTGOING PROTON <-0.96.

More…

Resonance Production in Diffractive $\pi^- N \to K^0_s K^0_s \pi^- N^{\prime}$ at 200-GeV/c

Chen, T.Y. ; Jenkins, E.W. ; Johnson, K.J. ; et al.
Phys.Rev.D 28 (1983) 2304, 1983.
Inspire Record 182627 DOI 10.17182/hepdata.23787

The reaction π−N→KS0KS0π−N′ at 200 GeV/c has been observed with a sensitivity of 450±150 events/μb. The KS0KS0π− system exhibits substantial K*−(890)K0 production. Also produced are f0(1270)π−, f′(1515)π−, and K*−(1430)K0 final states. These resonances occur predominantly at threshold. The diffractive KS0KS0π− cross section is 3.4±1.1 μb. An enhancement near the A3−(1680) is observed in the KS0KS0π− invariant-mass distribution.

2 data tables

No description provided.

EVIDENCE FOR A3 MESON SEEN.


Investigation of Two Photon Final States in $e^+ e^-$ Annihilation at $\sqrt{s}=34$.2-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Phys.Lett.B 123 (1983) 127-132, 1983.
Inspire Record 182585 DOI 10.17182/hepdata.30780

Two photon final states in e + e − annihilation have been analyzed at CM energies around 34 GeV. Good agreement with QED is observed. Lower limits for the QED cutoff parameters of Λ + > 59 GeV and Λ - > 44 GeV are determined. A search for two photons with missing energy yields an upper limit for the production of neutral particles which decay into a photon and a non-interacting particle. Constraints on the mass and the coupling strength of supersymmetric photinos are discussed.

2 data tables

Cross section for ABS(cos(theta)) <0.85.

No description provided.


Charged Particle Multiplicity Distributions in Proton Anti-proton Collisions at 540-{GeV} Center-of-mass Energy

The UA1 collaboration Arnison, G. ; Astbury, A. ; Aubert, Bernard ; et al.
Phys.Lett.B 123 (1983) 108-114, 1983.
Inspire Record 182553 DOI 10.17182/hepdata.30779

Results on charged particle production in pp̄ collision at s 1 2 = 540 GeV are presented. The data were obtained at the CERN pp̄ collider using the UA1 detector, operated without magnetic field. The central particle density is 3.3 + - 0.2 per unit o pseudo-rapidity for non-diffractive events. KNO scaling of the multiplicity distributions withresults from ISR energies is observed.

6 data tables

Pseudorapidity density distribution for all charged multiplicities corrected for acceptance and backgrounds by excluding NSD events. Data have been read from the plot.

More…

Search for Top Quark and a Test of Models Without Top Quark at the Highest {PETRA} Energies

Adeva, B. ; Barber, D.P. ; Becker, U. ; et al.
Phys.Rev.Lett. 50 (1983) 799, 1983.
Inspire Record 182337 DOI 10.17182/hepdata.20549

With a PETRA energy scan in ≤30-MeV steps, the continuum production of open top quark up to 38.54 GeV is excluded. Over regions of energy scan from 29.90 to 38.63 GeV limits are set on the product of hadronic branching ratio and electronic width BhΓee for toponium to be less than 2.0 keV at the 95% confidence level. By a search for flavor-changing neutral currents in b decay, models without a top quark are excluded.

4 data tables

MEASUREMENT OF R IN ENERGY SCAN FROM SQRT(S) = 29.9 TO 3.146 AND 33.0 TO 36.72.

MEASUREMENT OF R IN THE RANGE SQRT(S) 37 TO 38.63 GEV.

THRUST DISTRIBUTION FOR EVENTS IN THE RANGE SQRT(S) 37.94 TO 38.63 AND 38.54 TO 38.63.

More…

Production of $K \bar{K}$ Pairs in Photon-photon Collisions and the Excitation of the Tensor Meson F-prime (1515)

The TASSO collaboration Althoff, M. ; Brandelik, R. ; Braunschweig, W. ; et al.
Phys.Lett.B 121 (1983) 216-222, 1983.
Inspire Record 181468 DOI 10.17182/hepdata.30814

We have observed exclusive production of K + K − and K S O K S O pairs and the excitation of the f′(1515) tensor meson in photon-photon collisions. Assuming the f′ to be production in a helicity 2 state, we determine Λ( f ′ → γγ) B( f ′ → K K ) = 0.11 ± 0.02 ± 0.04 keV . The non-strange quark of the f′ is found to be less than 3% (95% CL). For the θ(1640) we derive an upper limit for the product Λ(θ rarr; γγ K K ) < 0.03 keV (95% CL ) .

2 data tables

Data read from graph.. Errors are the square roots of the number of events.

Data read from graph.. Errors are the square roots of the number of events.