This work extends our previous investigations at the CERN Intersecting Storage Rings, with improved statistics at three different energies, wider angular range and a better control over systematic errors. Values for the (diffraction) shape parameter b are given.
No description provided.
No description provided.
No description provided.
The first result of the pp2pp experiment at RHIC on elastic scattering of polarized protons at sqrt{s} = 200 GeV is reported here. The exponential slope parameter b of the diffractive peak of the elastic cross section in the t range 0.010 <= |t| <= 0.019 (GeV/c)^2 was measured to be b = 16.3 +- 1.6 (stat.) +- 0.9 (syst.) (GeV/c)^{-2} .
Measured slope of the elastic cross section.
The angular distributions of the reactions K - p → K - p and K - p → K K 0 n have been measured at 23 incident K - momenta between 1.136 and 1.798 ifGeV/c using the bubble chamber technique. These data, together with other published data on the same reactions, including K - p polarisations, K̄N total cross sections, and measurements of Re ƒ(0)/ Im ƒ(0) , have been analysed in terms of partial-wave amplitudes. Resonance behaviour is confirmed for the P 03 partial wave at 1890 MeV. The resonance parameters of the F 15 (1915), F 17 (2030) and G 07 (2100) have been redetermined. No evidence has been found for new resonances coupling significantly to K K N in the energy region explored.
No description provided.
We have investigated the above processes at the CERN Intersecting Storage Rings (ISR). Results show a marked change of the slope parameter b ( t , s ) = (d/d t ) ln (d σ /d t ) around − t ≈ 0.10 GeV 2 . The s − and t − dependence of b ( t , s ) have been observed over the interval 460 GeV 2 < s < 2900 GeV 2 and 0.02 GeV 2 < t < 0.40 GeV 2 .
No description provided.
No description provided.
No description provided.
The measurements of the differential cross section of elastic p-p scattering in relative units were performed in the energy range of 12–70 GeV. The values of the slope parameter were obtained from this data. It was shown that the slope parameter of the differential p-p scattering is monotonously increasing when the proton energy rises in the range 12–70 GeV. We have obtained the slope Pomeranchuk's pole trajectory from this data: α′ p = 0.40 ± 0.09.
No description provided.
abstract only
No description provided.
No description provided.
No description provided.
The slope b(s) of the forward diffraction peak of p−p elastic scattering has been measured in the momentum-transfer-squared range 0.005≲|t|≲0.09 (GeV/c)2 and at incident proton energies from 8 to 400 GeV. We find that b(s) increases with s, and in the interval 100≲s≲750 (GeV)2 it can be fitted by the form b(s)=b0+2α′lns with b0=8.23±0.27, α′=0.278±0.024 (GeV/c)−2.
MOMENTUM BINS ARE APPROX 20 GEV WIDE CENTRED AT THE GIVEN PLAB EXCEPT FOR THE 9 AND 12 GEV POINTS WHICH HAVE WIDTHS OF APPROX 1 AND 4 GEV RESPECTIVELY.
We present a total of 427 np analyzing power data points in a large angular interval at 12 energies between 0.312 and 1.10 GeV. The SATURNE II polarized beam of free monochromatic neutrons was scattered either on the Saclay frozen-spin polarized proton target or on CH 2 and C targets. Present results are compared with existing elastic and quasieleastic data.
Results of the analyzing power for n p scattering at 0.312 GeV. The CH2 target was used.
Results of the analyzing power for n p scattering at 0.363 GeV. The CH2 target was used.
Results of the analyzing power for n p scattering at 0.800 GeV.
The polarization parameters of the pn elastic scattering were measured at beam momenta between 1.30 and 1.82 GeV/c. The results are discussed in comparison with the partial-wave analysis of Hashimoto and Hoshizaki.
ERRORS ARE STATISTICAL ONLY.
ERRORS ARE STATISTICAL ONLY.
ERRORS ARE STATISTICAL ONLY.
Measurements are presented of differential dijet cross sections in diffractive photoproduction (Q^2<0.01 GeV^2) and deep-inelastic scattering processes (DIS, 4<Q^2<80 GeV^2). The event topology is given by ep-> e X Y, in which the system X, containing at least two jets, is separated from a leading low-mass proton remnant system Y by a large rapidity gap. The dijet cross sections are compared with NLO QCD predictions based on diffractive parton densities previously obtained from a QCD analysis of inclusive diffractive DIS cross sections by H1. In DIS, the dijet data are well described, supporting the validity of QCD factorisation. The diffractive DIS dijet data are more sensitive to the diffractive gluon density at high fractional parton momentum than the measurements of inclusive diffractive DIS. In photoproduction, the predicted dijet cross section has to be multiplied by a factor of approximately 0.5 for both direct and resolved photon interactions to describe the measurements. The ratio of measured dijet cross section to NLO prediction in photoproduction is a factor 0.5+-0.1 smaller than the same ratio in DIS. This suppression is the first clear observation of QCD hard scattering factorisation breaking at HERA. The measurements are also compared to the two soft colour neutralisation models SCI and GAL. The SCI model describes diffractive dijet production in DIS but not in photoproduction. The GAL model fails in both kinematic regions.
Differential cross section for DIS events as a function of Z_Pomeron.
Differential cross section for DIS events as a function of LOG10(X_Pomeron).
Differential cross section for DIS events as a function of W.