Comparisons of Deep Inelastic e p and e n Cross-Sections

Bodek, A. ; Breidenbach, M. ; Dubin, D.L. ; et al.
Phys.Rev.Lett. 30 (1973) 1087, 1973.
Inspire Record 83716 DOI 10.17182/hepdata.21415

Cross sections for inelastic scattering of electrons from hydrogen and deuterium were measured for incident energies from 4.5 to 18 GeV, at scattering angles of 18°, 26°, and 34°, and covering a range of squared four-momentum transfers up to 20 (GeVc)2. Neutron cross sections were extracted from the deuterium data using an impulse approximation. Comparisons with the proton measurements show significant differences between the neutron and proton cross sections.

1 data table

Axis error includes +- 1/1 contribution (DUE TO ERRORS IN ABOVE CORRECTIONSFOR DEAD-TIME LOSSES, INEFFICIENCIES IN E- IDENTIFICATION).


The Ratio of Deep - Inelastic e-n to e-p Cross-Sections in the Threshold Region

Bodek, A. ; Dubin, D.L. ; Elias, J.E. ; et al.
Phys.Lett.B 51 (1974) 417-420, 1974.
Inspire Record 91646 DOI 10.17182/hepdata.27946

We report measurements of the ratio of the deep-inelastic electron-neutron to electron-proton differential cross sections in the threshold ( ω <3) region. The ratio was found to scale and to decrease monotically with decreasing ω . No violation of the quark model lower bound of 0.25 was observed in the ratio.

1 data table

DATA ARE AVERAGED THROUG AVAILABLE KINEMATIC REGION.


Extraction of the Structure Functions and R=Sigma-L/Sigma-T from Deep Inelastic e p and e d Cross-Sections

Riordan, E.M. ; Bodek, A. ; Breidenbach, Martin ; et al.
SLAC-PUB-1634, 1975.
Inspire Record 100687 DOI 10.17182/hepdata.591

None

103 data tables

No description provided.

No description provided.

No description provided.

More…

Experimental Studies of the Neutron and Proton Electromagnetic Structure Functions

Bodek, A. ; Breidenbach, Martin ; Dubin, D.L. ; et al.
Phys.Rev.D 20 (1979) 1471-1552, 1979.
Inspire Record 140185 DOI 10.17182/hepdata.4325

We have carried out an experimental study of the neutron and proton deep-inelastic electromagnetic structure functions. The structure functions were extracted from electron-proton and electron-deuteron differential cross sections measured in three experiments spanning the angles 6°, 10°, 15°, 18°, 19°, 26°, and 34°. We report primarily on the large-angle (15°-34°) measurements. Neutron cross sections were extracted from the deuteron data using an impulse approximation. Our results are consistent with the hypothesis that the nucleon is composed of pointlike constituents. The variation of the cross section with angle suggests that the hypothetical constituents have spin ½. The data for σnσp, the ratio of the neutron and proton differential cross sections, are in the range 0.25 to 1.0, and are within the limits imposed by the quark model. Detailed studies of the structure functions were made for a range of the scaling variable ω from ω=1.3 to ω=10.0, and for a range of invariant four-momentum transfer Q2 from 1.0 to 20.0 GeV2. These studies indicate that the structure functions approximately scale in the variable ω, although significant deviations from scaling in ω are apparent in the region 1.3<ω<3.3. These deviations from scaling are in the same direction and of similar magnitude for both neutron and proton. The interpretation of the data in terms of various theoretical models is discussed.

100 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of asymmetry in spin dependent e p resonance region scattering.

Baum, Guenter ; Bergstrom, M.R. ; Clendenin, J.E. ; et al.
Phys.Rev.Lett. 45 (1980) 2000, 1980.
Inspire Record 154062 DOI 10.17182/hepdata.20698

The first measurements are reported of the asymmetry in resonance-region scattering of longitudinally polarized electrons by longitudinally polarized protons. Data have been obtained at Q2=0.5 and 1.5 (GeV/c)2 in the missing-mass range W=1.1−1.9 GeV. Results are compatible with a multipole analysis of single-pion electroproduction. The spin-dependent behavior is consistent with a duality mechanism as in the unpolarized case.

4 data tables

ELECTRON ASYMMETRY AT Q**2 ABOUT 0.5 GEV**2.

ELECTRON ASYMMETRY AT Q**2 ABOUT 1.5 GEV**2.

PHOTON ASYMMETRY AT Q**2 ABOUT 0.5 GEV**2.

More…

Experimental Test of the {Drell-Yan} Model in $p W \to \mu^+ \mu^- X$

Smith, S.R. ; Childress, S. ; Mockett, P.M. ; et al.
Phys.Rev.Lett. 46 (1981) 1607, 1981.
Inspire Record 164176 DOI 10.17182/hepdata.20659

We report a high-statistics study of the reaction p+W→μ++μ−+X with use of an intense 400-GeV/c proton beam, a magnetized-iron beam dump, and a wide-acceptance detector. Using data near xF=0, we have extracted the nucleon sea-quark distribution and find it to be a factor 1.6±0.3 larger than that obtained by inelastic charged-current neutrino scattering. We then compare the Drell-Yan prediction with our data including the previously unexplored region of large xF and find excellent agreement for a wide range of μ-pair invariant mass.

6 data tables

Dimuon mass mass distribution at XFP=0.1.

Dimuon production for varying mass as function of XFP.

Dimuon production for varying mass as function of XFP.

More…

Low Mass Electron Pair Anomaly in 17-{GeV}/c $\pi^- P$ Collisions

Stekas, J. ; Abshire, G. ; Adams, M.R. ; et al.
Phys.Rev.Lett. 47 (1981) 1686-1689, 1981.
Inspire Record 172147 DOI 10.17182/hepdata.20624

Inclusive e+e− production in 17-GeV/c π−p collisions has been measured. An excess of e+e− pairs over those from known sources for 0.1<~mee<~0.6 GeV and x<0.5 was found. No evidence is found for enhancements in specific final states involving electrons and photons or charged particles. The photon multiplicity associated with these pairs is measured.

1 data table

No description provided.


Electron Scattering from Nuclear Targets and Quark Distributions in Nuclei

Bodek, A. ; Giokaris, N. ; Atwood, W.B. ; et al.
Phys.Rev.Lett. 50 (1983) 1431, 1983.
Inspire Record 188877 DOI 10.17182/hepdata.20553

The deep-inelastic electromagnetic structure functions of steel, deuterium, and hydrogen nuclei have been measured with use of the high-energy electron beam at the Stanford Linear Accelerator Center. The ratio of the structure functions of steel and deuterium cannot be understood simply by corrections due to Fermi-motion effects. The data indicate that the quark momentum distributions in the nucleon become distorted in the nucleus. The present results are consistent with recent measurements with high-energy muon beams.

1 data table

No description provided.


CHARGED HADRON PRODUCTION IN e+ e- ANNIHILATION AT 29-GeV

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Badtke, D.H. ; et al.
Phys.Rev.Lett. 52 (1984) 577, 1984.
Inspire Record 195994 DOI 10.17182/hepdata.20439

The inclusive production cross sections and mean multiplicities of π±, K±, p, and p¯ in e+e− annihilation at a c.m. energy of 29 GeV have been measured with the time-projection chamber at PEP, using ionization energy loss to separate particle types. On average, 10.7±0.6 π±, 1.35±0.13 K±, and 0.60±0.08 p,p¯ are contained in an annihilation event. The fraction of pions among final-state particles decreases from over 95% at 0.3 GeV/c momentum to about 60% at high momentum; the kaon and proton fractions rise correspondingly.

7 data tables

PARTICLE FRACTIONS.

PARTICLE FRACTIONS.

PARTICLE FRACTIONS.

More…

phi MESON PRODUCTION IN e+ e- ANNIHILATIONS AT 29-GeV

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Badtke, D.H. ; et al.
Phys.Rev.Lett. 52 (1984) 2201, 1984.
Inspire Record 200105 DOI 10.17182/hepdata.20445

Production of φ mesons in e+e− annihilation at a center-of-mass energy of 29 GeV has been observed with the time-projection chamber detector at the PEP storage ring. The φ production rate has been measured in the energy range 0.075<x<0.55 (x=2Eφs), giving 0.077±0.012(stat)±0.016(syst) φ's per event. The average value of pt2 relative to the thrust axis is 1.0±0.4 (GeV/c)2.

3 data tables

No description provided.

EXTRAPOLAATION TO ALL X USES LUND MONTE CARLO PREDICTIONS.

ERRORS ARE BOTH STATISTICAL AND SYSTEMATIC. PT IS MEASURED RELATIVE TO THE EVENT THRUST AXIS, AND IS FOUND TO HAVE A MEAN VALUE OF 1.0 +- 0.4 GEV.