In models of anomaly-mediated supersymmetry breaking (AMSB), the lightest chargino is predicted to have a lifetime long enough to be detected in collider experiments. This letter explores AMSB scenarios in pp collisions at sqrt(s) = 7 TeV by attempting to identify decaying charginos which result in tracks that appear to have few associated hits in the outer region of the tracking system. The search was based on data corresponding to an integrated luminosity of 1.02 fb^-1 collected with the ATLAS detector in 2011. The pT spectrum of candidate tracks is found to be consistent with the expectation from Standard Model background processes and constraints on the lifetime and the production cross section were obtained. In the minimal AMSB framework with m_3/2 < 32 TeV, m_0 < 1.5 TeV, tan(beta) = 5 and mu > 0, a chargino having mass below 92 GeV and a lifetime between 0.5 ns and 2 ns is excluded at 95% confidence level.
The pT distribution of candidate tracks with the background prediction.
95% CL upper limits on the production cross section times acceptance as a function of the track pt threshold.
95% CL upper limits on the production cross section as a function of chargino lifetime for the chargino mass of 90.2 GeV.
A search for quark compositeness using dijet angular distributions from pp collisions at sqrt(s) = 7 TeV is presented. The search has been carried out using a data sample corresponding to an integrated luminosity of 2.2 inverse femtobarns, recorded by the CMS experiment at the LHC. Normalized dijet angular distributions have been measured for dijet invariant masses from 0.4 TeV to above 3 TeV and compared with a variety of contact interaction models, including those which take into account the effects of next-to-leading-order QCD corrections. The data are found to be in agreement with the predictions of perturbative QCD, and lower limits are obtained on the contact interaction scale, ranging from 7.5 up to 14.5 TeV at 95% confidence level.
Normalized dijet angular distributions for |yboost| < 1.11 and Mjj > 3.0 TeV.
Normalized dijet angular distributions for yboost < 1.11 and 2.4 < Mjj < 3.0 TeV.
Normalized dijet angular distributions for yboost < 1.11 and 1.9 < Mjj < 2.4 TeV.
The inclusive b-jet production cross section in pp collisions at a center-of-mass energy of 7 TeV is measured using data collected by the CMS experiment at the LHC. The cross section is presented as a function of the jet transverse momentum in the range 18 < pT < 200 GeV for several rapidity intervals. The results are also given as the ratio of the b-jet production cross section to the inclusive jet production cross section. The measurement is performed with two different analyses, which differ in their trigger selection and b-jet identification: a jet analysis that selects events with a b jet using a sample corresponding to an integrated luminosity of 34 inverse picobarns, and a muon analysis requiring a b jet with a muon based on an integrated luminosity of 3 inverse picobarns. In both approaches the b jets are identified by requiring a secondary vertex. The results from the two methods are in agreement with each other and with next-to-leading order calculations, as well as with predictions based on the PYTHIA event generator.
B-jet cross section from the 'jet' analysis.
B-jet cross section from the 'muon' analysis.
B-jet cross section extrapolated from the 'muon' analysis.
The inclusive production cross sections for forward jets, as well for jets in dijet events with at least one jet emitted at central and the other at forward pseudorapidities, are measured in the range of transverse momenta pt = 35-150 GeV/c in proton-proton collisions at sqrt(s) = 7 TeV by the CMS experiment at the LHC. Forward jets are measured within pseudorapidities 3.2<|eta|<4.7, and central jets within the |eta|<2.8 range. The double differential cross sections with respect to pt and eta are compared to predictions from three approaches in perturbative quantum chromodynamics: (i) next-to-leading-order calculations obtained with and without matching to parton-shower Monte Carlo simulations, (ii) PYTHIA and HERWIG parton-shower event generators with different tunes of parameters, and (iii) CASCADE and HEJ models, including different non-collinear corrections to standard single-parton radiation. The single-jet inclusive forward jet spectrum is well described by all models, but not all predictions are consistent with the spectra observed for the forward-central dijet events.
The measured inclusive forward jet production cross section as a function of the jet transverse momentum.
The measured dijet cross section for jets with one central and one forward jet, as functions of the transverse momentum of each jetRE = P P --> JET JET X.
The transverse momentum spectra of charged particles have been measured in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV by the CMS experiment at the LHC. In the transverse momentum range pt = 5-10 GeV/c, the charged particle yield in the most central PbPb collisions is suppressed by up to a factor of 5 compared to the pp yield scaled by the number of incoherent nucleon-nucleon collisions. At higher pt, this suppression is significantly reduced, approaching roughly a factor of 2 for particles with pt in the range pt=40-100 GeV/c.
Invariant charged particle differential yields for |eta|<1.0 for P P collisions.
Inclusive scaled charged particle invariant cross section.
Invariant charged particle differential yield in the centrality regions 0 TO 5%, 5 TO 10% and 10 TO 30%.
A search is presented for gluinos decaying via the supersymmetric partner of the top quark using events with two same-sign leptons, jets and missing transverse momentum. The analysis is performed with 2.05 fb^-1 of integrated luminosity from pp collisions at sqrt(s) = 7 TeV collected by the ATLAS detector at the LHC. No excess beyond the Standard Model expectation is observed and exclusion limits are derived for simplified models where the gluino decays via the supersymmetric partner of the top quark and in the MSUGRA/CMSSM framework. In those scenarios, gluino masses below 550 GeV are excluded at 95% CL within the parameter space considered, significantly extending the coverage with respect to existing limits. Depending on the model parameters, gluino masses up to 750 GeV can also be excluded at 95% CL.
Number of jets with pt>50 GeV for events with 2 SS leptons.
Missing transverse momentum distribution for events with 2 SS leptons and at least 4 jets with pt>50 GeV.
Transverse mass distribution for events with 2 SS leptons and at least 4 jets with pt>50 GeV.
Differential measurements of charged particle azimuthal anisotropy are presented for lead-lead collisions at sqrt(s_NN) = 2.76 TeV with the ATLAS detector at the LHC, based on an integrated luminosity of approximately 8 mb^-1. This anisotropy is characterized via a Fourier expansion of the distribution of charged particles in azimuthal angle (phi), with the coefficients v_n denoting the magnitude of the anisotropy. Significant v_2-v_6 values are obtained as a function of transverse momentum (0.5
The EP Resolution Factor vs. Centrality for n values from2 to 6.
The Chi Reolution Factor vs. Centrality for n values from 2 to 6.
The one-dimensional Delta(PHI) correlation function vs Delta(PHI) for |DETARAP| in the range 2 to 5 summed over all n values from 1 to 6.
The results of a search for supersymmetry in events with large missing transverse momentum and heavy flavour jets using an integrated luminosity corresponding to 2.05 fb^-1 of pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the Large Hadron Collider are reported. No significant excess is observed with respect to the prediction for Standard Model processes. Results are interpreted in a variety of R-parity conserving models in which scalar bottoms and tops are the only scalar quarks to appear in the gluino decay cascade, and in an SO(10) model framework. Gluino masses up to 600-900 GeV are excluded, depending on the model considered.
Acceptance in the GLUINO-NEUTRALINO plane in the Gbb model for the 1 btag signal region with Meff > 500 GeV.
Acceptance in the GLUINO-NEUTRALINO plane in the Gbb model for the 2 btags signal region with Meff > 500 GeV.
Acceptance in the GLUINO-NEUTRALINO plane in the Gbb model for the 1 btag signal region with Meff > 700 GeV.
This paper presents a measurement of the ordering of charged hadrons in the azimuthal angle relative to the beam axis in high-energy proton-proton collisions at the Large Hadron Collider (LHC). A spectral analysis of correlations between longitudinal and transverse components of the momentum of the charged hadrons, driven by the search for phenomena related to the structure of the QCD field, is performed. Data were recorded with the ATLAS detector at centre-of-mass energies of sqrt(s) = 900 GeV and sqrt(s) = 7 TeV. The correlations measured in a phase space region dominated by low-pT particles are not well described by conventional models of hadron production. The measured spectra show features consistent with the fragmentation of a QCD string represented by a helix-like ordered gluon chain.
The corrected data for the power spectra S_E for the three different data samples at a centre-of-mass energy of 7 TeV.
The corrected data for the power spectra S_ETA for the three different data samples at a centre-of-mass energy of 7 TeV.
The corrected data for the power spectra S_E for the three different data samples at a centre-of-mass energy of 900 GeV.
A measurement of the cross section for the production of an isolated photon in association with jets in proton-proton collisions at a center-of-mass energy $\sqrt{s}$ = 7 TeV is presented. Photons are reconstructed in the pseudorapidity range $|\eta^{\gamma}| \lt 1.37$ and with a transverse energy $E_T^\gamma$ > 25 GeV. Jets are reconstructed in the rapidity range $|y^{jet}|$ < 4.4 and with a transverse momentum $p_T^{jet}$ > 20 GeV. The differential cross section $d\sigma/dE_T^\gamma$ is measured, as a function of the photon transverse energy, for three different rapidity ranges of the leading-$p_T$ jet: $|y^{jet}| < 1.2, 1.2 \le |y^{jet}|$ < 2.8 and 2.8 $\le |y^{jet}|$ < 4.4. For each rapidity configuration the same-sign $(\eta^{\gamma}y^{jet}\ge 0)$ and opposite-sign $(\eta^{\gamma}y^{jet}<0)$ cases are studied separately. The results are based on an integrated luminosity of 37 pb$^{-1}$, collected with the ATLAS detector at the LHC. Next-to-leading order perturbative QCD calculations are found to be in fair agreement with the data, except for $E_T^{\gamma} \lt 45$ GeV, where the theoretical predictions overestimate the measured cross sections.
The measured cross section as a function of the photon transverse energy, ET, for pT(jet)>20 GeV, |eta(gamma)|<1.37, |y(jet)|<1.2, eta(gamma)*y(jet)>=0.
The measured cross section as a function of the photon transverse energy, ET, for pT(jet)>20 GeV, |eta(gamma)|<1.37, 1.2<=|y(jet)|<2.8, eta(gamma)*y(jet)>=0.
The measured cross section as a function of the photon transverse energy, ET, for pT(jet)>20 GeV, |eta(gamma)|<1.37, 2.8<=|y(jet)|<4.4, eta(gamma)*y(jet)>=0.