Date

Production of Charmed Mesons in $e^+ e^-$ Annihilation at 10.5-{GeV}

The CLEO collaboration Avery, P. ; Bebek, C. ; Berkelman, Karl ; et al.
Phys.Rev.Lett. 51 (1983) 1139, 1983.
Inspire Record 191835 DOI 10.17182/hepdata.20524

A measurement is presented of the inclusive production of charged D* and neutral D mesons from nonresonant e+e− annihilation in the energy region near the ϒ(4S) resonance. The momentum distribution shows a large contribution at high momenta as expected for heavy quark production. Comparison of the spectrum with several phenomenological models is made. The relative yields of the D* and D mesons indicate that the charm cross section is dominated by the D* contribution.

2 data tables

No description provided.

No description provided.


PHOTON MULTIPLICITY AND ENERGY FRACTION OF THE UPSILON (4S) AND NEAR CONTINUUM

Chen, A. ; Goldberg, M. ; Horwitz, N. ; et al.
PRINT-83-0720, 1983.
Inspire Record 191581 DOI 10.17182/hepdata.12129

None

2 data tables

CHARGED HADRON MEASUREMENTS ARE TAKEN FROM R.A. PERCHANOK, PHD THESIS, CORNELL UNIVERSITY (1983).

CHARGED HADRON MEASUREMENTS ARE TAKEN FROM G.J. RUCINSKI, PHD THESIS, CORNELL UNIVERSITY (1983).


LAMBDA AND K0 PRODUCTION IN THE UPSILON REGION

Green, J. ; Hicks, R.G. ; Sannes, F. ; et al.
PRINT-83-0866, 1983.
Inspire Record 192219 DOI 10.17182/hepdata.12780

None

5 data tables

NUMBER OF K0S PER EVENT IN THE UPSILON REGION.

NUMBER OF ANTI(LAMBDA)S PER EVENT IN THE UPSILON REGION. FOR UPSI(4S) RESULTS SEE 'A'.

DSIG/DP DISTRIBUTIONS FOR K0 AND (ANTI) LAMBDA PRODUCTION AT THE UPSILON RESONANCES.

More…

phi MESON PRODUCTION AT THE UPSILON RESONANCES AND THE NEARBY CONTINUUM

Chen, A. ; Goldberg, M. ; Horwitz, N. ; et al.
PRINT-83-0865, 1983.
Inspire Record 192222 DOI 10.17182/hepdata.11815

None

1 data table

No description provided.


CHARGED HADRON PRODUCTION IN THE UPSILON REGION

Avery, P. ; Bebek, C. ; Berkelman, Karl ; et al.
PRINT-83-0867, 1983.
Inspire Record 192220 DOI 10.17182/hepdata.12222

None

3 data tables

No description provided.

NUMBERS ACTUALLY GIVEN IN GREEN 83 (CORNELL CONF, RED = 1291).

NUMBERS ACTUALLY GIVEN IN GREEN 83 (CORNELL CONF, RED = 1291). FOR UPSI(4S) PROTON PRODUCTION SEE ALAM 83, PRL 51/1143/83, RED = 1271.


The Total Cross-section for Electron - Positron Annihilation Into Hadron Final States in the $\Upsilon$ Energy Region

The CLEO collaboration Giles, R. ; Hassard, J. ; Hempstead, M. ; et al.
Phys.Rev.D 29 (1984) 1285, 1984.
Inspire Record 193577 DOI 10.17182/hepdata.23768

We report measurements made with the CLEO detector at the Cornell Electron Storage Ring (CESR) of the total cross section for e+e−→hadrons at the ϒ(1S), ϒ(2S), and ϒ(3S), and in the nearby nonresonant continuum. We find R=3.77±0.06 (statistical) ± 0.24 (systematic) for the ratio of the nonresonant hadronic cross section to the cross section for muon-pair production at a center-of-mass total energy W=10.4 GeV. For the leptonic decay widths Γee of the ϒ(1S), ϒ(2S), and ϒ(3S) we obtain 1.30±0.05±0.08, 0.52±0.03±0.04, and 0.42±0.04±0.03 keV, respectively.

1 data table

No description provided.


Limit on the B ---> u Coupling from Semileptonic B Decay

The CLEO collaboration Chen, A. ; Goldberg, M. ; Horwitz, N. ; et al.
Phys.Rev.Lett. 52 (1984) 1084, 1984.
Inspire Record 199380 DOI 10.17182/hepdata.20474

We have used the momentum spectrum of leptons produced in semileptonic B-meson decays to set a 90%-confidence-level upper limit on Γ(b→ulν)Γ(b→clν) of 4%. We also measure the semileptonic branching fractions of the B meson to be (12.0±0.7±0.5)% for electrons and (10.8±0.6±1.0)% for muons.

2 data tables

No description provided.

No description provided.


Hyperon Production in $e^+ e^-$ Interactions in the $\Upsilon$ Region

The CLEO collaboration Alam, M.S. ; Csorna, S.E. ; Garren, L. ; et al.
Phys.Rev.Lett. 53 (1984) 24, 1984.
Inspire Record 200712 DOI 10.17182/hepdata.20410

We report measurements from the CLEO detector of the rate of Ξ and Λ production in e+e− interactions in the upsilon region. Hyperon production from the decay of the ϒ(1s) is compared with continuum e+e− data. The ratio of the production rates of Λ (and Λ―) to K0 (and K―0) on the ϒ(1s) is 0.21 ± 0.03, much larger than in the continuum, 0.07 ± 0.01. The ratios of the production rates of the Ξ and Λ are comparable, 0.10±0.02 [ϒ(1S)] and 0.07 ± 0.02 (continuum). We discuss some implications of the data for gluon and quark fragmentation models.

2 data tables

CONTINUUM IS ECM 10.38 TO 10.64 GEV.

No description provided.


Neutral $D$ Meson Properties in 360-{GeV}/$c \pi^- p$ Interactions

The LEBC-EHS collaboration Aguilar-Benitez, M. ; Allison, W.W. ; Bagnaia, P. ; et al.
Phys.Lett.B 146 (1984) 266-272, 1984.
Inspire Record 202656 DOI 10.17182/hepdata.30495

Based on a sample of 22 four-prong D 0 / D 0 decays produced in hydrogen by 360 GeV/ c π − , we present the following new results: mean lifetime τ = (3.5 −0.9 +1.4 ) x 10 −13 s ; production cross section for x F > 0.0, σ = (10.3 ± 3.5) ωb ; the D → K ± π ± π + π − branching ratio = (7.1 ± 2.5)%.

1 data table

No description provided.


Inclusive Hadron Production in Upsilon Decays and in Nonresonant electron-Positron Annihilation at 10.49-GeV

The CLEO collaboration Behrends, S. ; Chadwick, K. ; Gentile, T. ; et al.
Phys.Rev.D 31 (1985) 2161, 1985.
Inspire Record 205668 DOI 10.17182/hepdata.23589

We report measurements of single-particle inclusive spectra and two-particle correlations in decays of the Υ(1S) resonance and in nonresonant annihilations of electrons and positrons at center-of-mass energy 10.49 GeV, just below BB¯ threshold. These data were obtained using the CLEO detector at the Cornell Electron Storage Ring (CESR) and provide information on the production of π, K, ρ, K*, φ, p, Λ, and Ξ in quark and gluon jets. The average multiplicity of hadrons per event for upsilon decays (compared with continuum annihilations) is 11.4 (10.5) pions, 2.4 (2.2) kaons, 0.6 (0.5) ρ0, 1.2 (0.8) K*, 0.6 (0.4) protons and antiprotons, 0.15 (0.08) φ, 0.19 (0.07) Λ and Λ¯, and 0.016 (0.005) Ξ− and Ξ¯ +. We have also seen evidence for η and f0 production. The most significant differences between upsilon and continuum final states are (1) the inclusive energy spectra fall off more rapidly with increasing particle energy in upsilon decays, (2) the production of heavier particles, especially baryons, is not as strongly suppressed in upsilon decays, and (3) baryon and antibaryon are more likely to be correlated at long range in upsilon decay than in continuum events.

36 data tables

No description provided.

No description provided.

VALUES AT X = 0.10 ARE ACTUALLY AP RATES DOUBLED.

More…