Antinucleon-nucleus annihilations into two-body final states containing only one or no meson are unusual annihilations (Pontecorvo reactions), practically unexplored experimentally, with the exception of the channel p d → π − p , for which only two low-statistics measurements exist. Their physical interest lies in the possibility of exploring small-distance nuclear dynamics, in which an important role can be played by non-nucleonic degrees of freedom. A new measurement of the p d → π − p reaction rate at rest, performed with the OBELIX spectrometer at LEAR, with the best statistics up to now and a careful evaluation of systematic effects is reported, together with a critical analysis of the existing theoretical models. The measured branching ratio, which confirms the previous results, can represent a reference point for the studies in the field.
No description provided.
The results of intranuclear cascade calculations (ideal gas with two-body collisions and no mean field), complemented by a simple percolation procedure, are compared with experimental data on protons and light nuclear fragments (d, t, He3, and He4) measured in 400 and 800 MeV/nucleon Ne+Nb collisions using a large solid angle detector. The model reproduces quite well global experimental observables like nuclear fragment multiplicity distributions or production cross sections, and nuclear fragment to proton ratios. For rapidity distributions the best agreement occurs for peripheral reactions. Transverse momentum analysis confirms once again that the cascade, although being a microscopic approach, gives too small a collective flow, the best agreement being reached for Z=2 nuclear fragments. Nevertheless these comparisons are encouraging for further improvements of the model. Moreover, such an approach is easy to extend to any other models that could calculate the nucleon phase space distribution after the compression stage of the reaction, when light nuclear fragments emitted at large angles are constructed from percolation.
No description provided.
No description provided.
The H2(e,e’n)1H quasielastic cross section was measured at Q2 values of 0.109, 0.176, and 0.255 (GeV/c)2. The neutron detection efficiency was determined by the associated particle technique with the H2(γ,pn) reaction for each of the three neutron kinetic energies. These H2(e,e’n) measurements of the coincidence cross sections are the first at low Q2. The cross sections are sensitive primarily to the neutron magnetic form factor GMn at these kinematics. The extracted GMn values have smaller uncertainties than previous data and are consistent with the dipole parametrization at the two higher momentum transfers; at the lowest momentum transfer, the value of GMn is ∼10% higher than the dipole value.
No description provided.
It is shown that in interactions of protons at 200, 300, and 400 GeV, and negative pions at 300 GeV with emulsion nuclei, the scaling of the multiplicity of relativistic charged secondaries is valid and described by a linear function of the scaling variable, z.
No description provided.
No description provided.
The depolarization parameter D 0 n 0 n in the charge-exchange reaction p p ↑→ n n ↑ has been measured for the first time at the CERN Low Energy Antiproton Ring (LEAR) at 875 MeV/ c antiproton beam momentum, in the forward hemisphere. The measured values of D 0 n 0 n are always smaller than ±0.3, indicating that the two-spin amplitudes dominate the scattering matrix as suggested by the meson exchange potential models.
No description provided.
The differential cross section for the reaction H2(γ,p)n has been measured at several center-of-mass angles ranging from 50° to 143° for photon energies between 0.8 and 1.8 GeV. The experiment was performed at the SLAC-NPAS facility with the use of the 1.6 GeV/c spectrometer to detect the high energy protons produced by a bremsstrahlung beam directed at a liquid deuterium target. Contributions from concurrent disintegration by the residual electron beam were determined by measuring the proton yield without the Cu photon radiator. At angles not very far from 90°, the energy dependence of the cross sections is consistent with predictions of scaling using counting rules for constituent quarks. At least one theoretical calculation based on a meson-baryon picture of the reaction is able to reproduce the magnitude and energy dependence of the 90° cross section. The angular distribution exhibits a large enhancement at backward angles at the higher energies.
THE QUOTED ERRORS ARE STATISTICAL ONLY.
The differential cross sections for antiproton elastic scattering on 4 He at 192.8 MeV/ c are measured. The annihilation cross section σ a = (377.6 ± 8.0) mb, the elastic cross section σ el = (206.3 ± 6.6) mb and the total p 4 He interaction cross section σ tot = (583.9 ± 10.4) mb are determined. The ratio of the real to imaginary part of the forward p 4 He amplitude is found: π =−0.17± 0.33 0.24 . Partial wave analysis reveals that the S, P and D waves are essential in this energy region.
Charged prong multiplicity distributions in pbar HE annihilation.
Mean charged particle multiplicity in pbar HE4 annihilations.
No description provided.
We present the first measurement of the left-right cross section asymmetry (ALR) for Z boson production by e+e− collisions. The measurement was performed at a center-of-mass energy of 91.55 GeV with the SLD detector at the SLAC Linear Collider which utilized a longitudinally polarized electron beam. The average beam polarization was (22.4±0.6)%. Using a sample of 10 224 Z decays, we measure ALR to be 0.100±0.044(stat)±0.004(syst), which determines the effective weak mixing angle to be sin2θWeff=0.2378 ±0.0056(stat)±0.0005(syst).
R and L refer to Right and Left handed beam polarization.
Effective weak mixing angle.
We have measured antiproton production cross sections as functions of centrality in collisions of 14.6 GeV/c per nucleon Si28 ions with targets of Al, Cu, and Pb. For all targets, the antiproton yields increase linearly with the number of projectile nucleons that have interacted, and show little target dependence. We discuss the implications of this result on the production and absorption of antiprotons within the nuclear medium.
No description provided.
No description provided.
No description provided.
The subthreshold production of neutral pions was studied in the reactions 24 Mg(α,π 0 )X at 43 MeV·. A and 24 Mg( 16 O,π 0 )X at 24 and 33 MeV·. A . The energies and emission angles of the two coincident photons from the π 0 -decay were measured with a lead glass shower detector. The cross sections of 3.5 and 6.6 nb from the 16 O-induced reactions are compatible with other experiments in this energy region. For the α-induced reaction a production cross section of 1.3 nb was found. Here, only 22 MeV above the absolute threshold, the pion emission from an excited Δ -nucleon hole state is strongly suppressed. The differential cross sections at very backward angles are by an order of magnitude bigger than the yields at 90° pointing to a strong absorption of the produced pions by the larger target nucleus.
No description provided.