A search is presented for narrow resonances, with a mass between 0.6 and 1.8 TeV, decaying to pairs of jets, in proton-proton collisions at $\sqrt{s}$ = 13 TeV. The search is performed using dijets that are reconstructed, selected, and recorded in a compact form by the high-level trigger in a technique referred to as "data scouting", from data collected in 2016$-$2018 corresponding to an integrated luminosity of 177 fb$^{-1}$. The dijet mass spectra are well described by a smooth parameterization, and no significant evidence for the production of new particles is observed. Model-independent upper limits are presented on the product of the cross section, branching fraction, and acceptance for the individual cases of narrow quark-quark, quark-gluon, and gluon-gluon resonances, and are compared to the predictions from a variety of models of narrow dijet resonance production. The upper limit on the coupling of a dark matter mediator to quarks is presented as a function of the mediator mass. The sensitivity of this search goes beyond what is expected from statistical scaling with the integrated luminosity alone, as a consequence of the use of fewer parameters in the background function within a more robust statistical procedure.
Observed differential dijet spectrum using the 2016 data.
Observed differential dijet spectrum using the 2017 data.
Observed differential dijet spectrum using the 2018 data.
Searches for resonances decaying into pairs of jets are performed using proton-proton collision data collected at $\sqrt{s} =$ 13 TeV corresponding to an integrated luminosity of up to 36 fb$^{-1}$. A low-mass search, for resonances with masses between 0.6 and 1.6 TeV, is performed based on events with dijets reconstructed at the trigger level from calorimeter information. A high-mass search, for resonances with masses above 1.6 TeV, is performed using dijets reconstructed offline with a particle-flow algorithm. The dijet mass spectrum is well described by a smooth parameterization and no evidence for the production of new particles is observed. Upper limits at 95% confidence level are reported on the production cross section for narrow resonances with masses above 0.6 TeV. In the context of specific models, the limits exclude string resonances with masses below 7.7 TeV, scalar diquarks below 7.2 TeV, axigluons and colorons below 6.1 TeV, excited quarks below 6.0 TeV, color-octet scalars below 3.4 TeV, W' bosons below 3.3 TeV, Z' bosons below 2.7 TeV, Randall-Sundrum gravitons below 1.8 TeV and in the range 1.9 to 2.5 TeV, and dark matter mediators below 2.6 TeV. The limits on both vector and axial-vector mediators, in a simplified model of interactions between quarks and dark matter particles, are presented as functions of dark matter particle mass and coupling to quarks. Searches are also presented for broad resonances, including for the first time spin-1 resonances with intrinsic widths as large as 30% of the resonance mass. The broad resonance search improves and extends the exclusions of a dark matter mediator to larger values of its mass and coupling to quarks.
Observed differential dijet spectrum from the low-mass analysis. The cross-section is calculated by dividing the event yield by the bin width and luminosity.
Observed differential dijet spectrum from the high-mass analysis. The cross-section is calculated by dividing the event yield by the bin width and luminosity.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for quark-quark, quark-gluon, and gluon-gluon type dijet resonances.