The NuTeV experiment at Fermilab has obtained a unique high statistics sample of neutrino and anti-neutrino interactions using its high-energy sign-selected beam. We present a measurement of the differential cross section for charged-current neutrino and anti-neutrino scattering from iron. Structure functions, F_2(x,Q^2) and xF_3(x,Q^2), are determined by fitting the inelasticity, y, dependence of the cross sections. This measurement has significantly improved systematic precision as a consequence of more precise understanding of hadron and muon energy scales.
Measurement of F2 at X = 0.015.
Measurement of F2 at X = 0.045.
Measurement of F2 at X = 0.080.
A new structure function analysis of CCFR deep inelastic nu-N and nubar-N scattering data is presented for previously unexplored kinematic regions down to Bjorken x=0.0045 and Q^2=0.3 GeV^2. Comparisons to charged lepton scattering data from NMC and E665 experiments are made and the behavior of the structure function F2_nu is studied in the limit Q^2 -> 0.
F2 measurements.
We present an improved determination of the proton structure functions $F_{2}$ and $xF_{3}$ from the CCFR $\nu $-Fe deep inelastic scattering (DIS) experiment. Comparisons to high-statistics charged-lepton scattering results for $F_{2}$ from the NMC, E665, SLAC, and BCDMS experiments, after correcting for quark-charge and heavy-target effects, indicate good agreement for $x>0.1$ but some discrepancy at lower x. The $Q^{2}$ evolution of the structure functions yields the quantum chromodynamics (QCD) scale parameter $\Lambda_{\bar{MS}}^{NLO,(4)}=337 \pm 28$(exp.) MeV. This corresponds to a value of the strong coupling constant at the scale of mass of the Z-boson of $\alpha _{S}(M_{Z}^{2})=0.119 \pm 0.002 (exp.) \pm 0.004 (theory)$ and is one of the most precise measurements of this quantity.
No description provided.
No description provided.
No description provided.
We report on a measurement of the proton structure function $F_2$ in the range $3.5\times10~{-5}\leq x \leq 4\times10~{-3}$ and 1.5 ${\rm GeV~2} \leq Q~2 \leq15$ ${\rm GeV~2}$ at the $ep$ collider HERA operating at a centre-of-mass energy of $\sqrt{s} = 300$ ${\rm GeV}$. The rise of $F_2$ with decreasing $x$ observed in the previous HERA measurements persists in this lower $x$ and $Q~2$ range. The $Q~2$ evolution of $F_2$, even at the lowest $Q~2$ and $x$ measured, is consistent with perturbative QCD.
Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.
Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.
Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.
This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in $ep$ interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of $\xpom$, the momentum fraction lost by the proton, of $\beta$, the momentum fraction of the struck quark with respect to $\xpom$, and of $Q~2$. The $\xpom$ dependence is consistent with the form \xpoma where $a=1.30\pm0.08(stat)~{+0.08}_{-0.14}(sys)$ in all bins of $\beta$ and $Q~2$. In the measured $Q~2$ range, the diffractive structure function approximately scales with $Q~2$ at fixed $\beta$. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule.
No description provided.
No description provided.
No description provided.
The gluon momentum density xg ( x , Q 2 ) of the proton was extracted at Q 2 = 20 GeV 2 for small values of x between 4 × 10 −4 and 10 −2 from the scaling violations of the proton structure function F 2 measured recently by ZEUS in deep inelastic neutral current ep scattering at HERA. The extraction was performed in two ways. Firstly, using a global NLO fit to the ZEUS data on F 2 at low x constrained by measurementsfrom NMC at larger x ; and secondly using published approximate methods for the solution of the GLAP QCD evolution equations. Consistent results are obtained. A substantial increase of the gluon density is found at small x in comparison with the NMC result obtained at larger values of x .
Values of F2 and slope of F2 obtained from fits to the ZEUS paper used in the extraction of the gluon momentum distributions.
Gluon momenta distribution at Q**2 = 20.
The ZEUS detector has been used to measure the proton structure functionF2. During 1993 HERA collided 26.7 GeV electrons on 820 GeV protons. The data sample corresponds to an integrated luminosity of 0.54 pb−1, representing a twenty fold increase in statistics compared to that of 1992. Results are presented for 7<Q2<104 GeV2 andx values as low as 3×10−4. The rapid rise inF2 asx decreases observed previously is now studied in greater detail and persists forQ2 values up to 500 GeV2.
No description provided.
No description provided.
No description provided.
This paper presents our first measurement of the F 2 structure function in neutral-current, deep inelastic scattering using the ZEUS detector at HERA, the ep colliding beam facility at DESY. The data correspond to an integrated luminosity of 24.7 nb −1 . Results are presented for data in range of Q 2 from 10 GeV 2 to 4700 GeV 2 and Bjorken x down to 3.0 × 10 −4 . The F 2 structure function increases rapidly as x decreases.
No description provided.
No description provided.
No description provided.