We report measurements of the photon beam asymmetry $\Sigma$ for the reactions $\vec{\gamma}p\to p\pi^0$ and $\vec{\gamma}p\to p\eta $ from the GlueX experiment using a 9 GeV linearly-polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Lab's Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous $\pi^0$ measurements and are the first $\eta$ measurements in this energy regime. The results are compared with theoretical predictions based on $t$-channel, quasi-particle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models.
Measurement of the beam asymmetry $\Sigma$ for $\pi^0$ photoproduction on the proton at $E_\gamma = 9$ GeV. The uncorrelated systematic errors (syst) are given in the table below along with a correlated normalization uncertainty (norm) of 3.6% due to the beam polarization.
Measurement of the beam asymmetry $\Sigma$ for $\eta$ photoproduction on the proton at $E_\gamma = 9$ GeV. The uncorrelated systematic errors (syst) are given in the table below along with a correlated normalization uncertainty (norm) of 3.6% due to the beam polarization.
High statistics measurements of the photon asymmetry $\mathrm{\Sigma}$ for the $\overrightarrow{\gamma}$p$\rightarrow\pi^{0}$p reaction have been made in the center of mass energy range W=1214-1450 MeV. The data were measured with the MAMI A2 real photon beam and Crystal Ball/TAPS detector systems in Mainz, Germany. The results significantly improve the existing world data and are shown to be in good agreement with previous measurements, and with the MAID, SAID, and Bonn-Gatchina predictions. We have also combined the photon asymmetry results with recent cross-section measurements from Mainz to calculate the profile functions, $\check{\mathrm{\Sigma}}$ (= $\sigma_{0}\mathrm{\Sigma}$), and perform a moment analysis. Comparison with calculations from the Bonn-Gatchina model shows that the precision of the data is good enough to further constrain the higher partial waves, and there is an indication of interference between the very small $F$-waves and the $N(1520) 3/2^{-}$ and $N(1535) 1/2^{-}$ resonances.
Photon beam asymmetry Sigma at W=1.2159988 GeV
Photon beam asymmetry Sigma at W=1.2194968 GeV
Photon beam asymmetry Sigma at W=1.2225014 GeV
The γp→π0p reaction was studied at laboratory photon energies from 425 to 1445 MeV with a transversely polarized target and a longitudinally polarized beam. The beam-target asymmetry F was measured for the first time and new high precision data for the target asymmetry T were obtained. The experiment was performed at the photon tagging facility of the Mainz Microtron (MAMI) using the Crystal Ball and TAPS photon spectrometers. The polarized cross sections were expanded in terms of associated Legendre functions and compared to recent predictions from several partial-wave analyses. The impact of the new data on our understanding of the underlying partial-wave amplitudes and baryon resonance contributions is discussed.
Target asymmetry T for c.m. energy W= 1.3062 GeV
Target asymmetry T for c.m. energy W= 1.3275 GeV
Target asymmetry T for c.m. energy W= 1.3486 GeV
Polarisation-dependent differential cross sections σT associated with the target asymmetry T have been measured for the reaction γp→→pπ0 with transverse target polarisation from π0 threshold to photon energies of 190 MeV. The data were obtained using a frozen-spin butanol target with the Crystal Ball / TAPS detector set-up and the Glasgow photon tagging system at the Mainz Microtron MAMI. Results for σT have been used in combination with our previous measurements of the unpolarised cross section σ0 and the beam asymmetry Σ for a model-independent determination of S - and P -wave multipoles in the π0 threshold region, which includes for the first time a direct determination of the imaginary part of the E0+ multipole.
Target asymmetry T for c.m. cos(Theta_pi0)= 0.996
Target asymmetry T for c.m. cos(Theta_pi0)= 0.966
Target asymmetry T for c.m. cos(Theta_pi0)= 0.906
Differential cross sections for the gamma p -> pi^0 p reaction have been measured with the A2 tagged-photon facilities at the Mainz Microtron, MAMI C, up to the center-of-mass energy W=1.9 GeV. The new results, obtained with a fine energy and angular binning, increase the existing quantity of pi^0 photoproduction data by ~47%. Owing to the unprecedented statistical accuracy and the full angular coverage, the results are sensitive to high partial-wave amplitudes. This is demonstrated by the decomposition of the differential cross sections in terms of Legendre polynomials and by further comparison to model predictions. A new solution of the SAID partial-wave analysis obtained after adding the new data into the fit is presented.
Run 1. Total cross section as a function of c.m. energy W.
Excitation function at cos(Theta_eta)= -0.967
Excitation function at cos(Theta_eta)= -0.900
A precision measurement of the differential cross sections $d\sigma/d\Omega$ and the linearly polarized photon asymmetry $\Sigma \equiv (d\sigma_\perp - d\sigma_\parallel) \slash (d\sigma_\perp + d\sigma_\parallel)$ for the $\vec{\gamma} p \rightarrow \pi^0p$ reaction in the near-threshold region has been performed with a tagged photon beam and almost $4\pi$ detector at the Mainz Microtron. The Glasgow-Mainz photon tagging facility along with the Crystal Ball/TAPS multi-photon detector system and a cryogenic liquid hydrogen target were used. These data allowed for a precise determination of the energy dependence of the real parts of the $S$- and all three $P$-wave amplitudes for the first time and provide the most stringent test to date of the predictions of Chiral Perturbation Theory and its energy region of agreement with experiment.
Differential cross section at W=1.0752268 GeV
Differential cross section at W=1.0773190 GeV
Differential cross section at W=1.0793464 GeV
The polarization of the recoil proton in γ + p → p + π0 has been measured at photon energies of 725 MeV and 900 MeV for centerof-mass angles near 90° using a small propane-ethane gas bubble chamber. Protons emerging from a liquid hydrogen target are momentum-analysed with a magnet, and the scattering from carbon observed in the bubble chamber. A counter telescope rejects pions and electrons, and protons from multiple pion processes are discriminated against by keeping the peak bremsstrahlung energy just above the mean photon energy. The visual method of observing scattering asymmetries has the advantage of being insensitive to systematic asymmetries in the incoming proton flux. It also quickly eliminates strongly inelastic scatters (stars), and provides a complete angular distribution from which the fraction of scatters which are inelastic can be deduced. The effect of inelastic scatters upon the scattering asymmetry is large when the energy-loss resolution is poor, an inherent problem with bremsstrahlung beams. The counting rate for this small chamber (3.4g/cm2 carbon scatterer) was 11 scatters/hour using every 5th synchrotron pulse; larger chambers with more dense scatterers (such as Freon) could give higher counting rates. Results are fork = 725MeV and ϑ (pion) = 87° (cm.), P=0.74±0.20, and for k=900MeV and ϑ (pion) = 70°, P=.51±.7. P is taken to be positive along the directionK xp, wherep is the momentum of the outgoing proton.
No description provided.
New results are presented on the differential cross-section for the reaction α+p→π0+p, at energies between 600 and 1000 MeV, and c.m. pion angles Θ*π=40° and Θ*π=60°. The present data, together with that at Θ*π=40° already published (11), show an angle-independent position of the second resonance at about 750 MeV. Rather flat angular distributions in the forward c.m. hemisphere are also favoured by these data. On comparing the cross-sections obtained when detecting both the neutral pion and the recoil proton, and when detecting only the latter, estimates of the background of «ghost protons» are obtained, in agreement with the empirical curve proposed in ref. (11).
No description provided.
Differential cross sections for the reaction $\gamma p \to p \pi^0$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.
Differential cross section for indicent photon energy 675 MeV.
Differential cross section for indicent photon energy 725 MeV.
Differential cross section for indicent photon energy 775 MeV.
Neutral pion photoproduction has been measured from 550 to 1500 MeV with the GRAAL facility, located at the ESRF in Grenoble. Differential cross-section and beam asymmetry have been measured over a wi
Measured differential angular distribution for incident photon energy 555 Mev.
Measured differential angular distribution for incident photon energy 578 Mev.
Measured differential angular distribution for incident photon energy 597 Mev.