The interactions of 775 MeV (kinetic energy) π−-mesons in a hydrogen bubble chamber have been studied. Total and partial crosssections have been determined with the following results: σ (total) = (39.0±1.6) mb, σ (elastic)=(14.8±0.7) mb, σ (π− + p → all neutrals) = (9.0 ± 0.5) mb, σ (π− + p = π− + π+ + n) = (9.8 ± 0.5) mb, and σ (π− + p = π− + p + π0) = (4.8 ± 0.3) mb. The elastic-scattering angular distribution has been fitted with a Legendre polynomial series terminated at the fifth order. Various angular and effective-mass distributions of single-π production are presented and discussed in terms of the Olsson-Yodh and O.P.E. models.
No description provided.
No description provided.
No description provided.
The polarization of the recoil proton in γ + p → p + π0 has been measured at photon energies of 725 MeV and 900 MeV for centerof-mass angles near 90° using a small propane-ethane gas bubble chamber. Protons emerging from a liquid hydrogen target are momentum-analysed with a magnet, and the scattering from carbon observed in the bubble chamber. A counter telescope rejects pions and electrons, and protons from multiple pion processes are discriminated against by keeping the peak bremsstrahlung energy just above the mean photon energy. The visual method of observing scattering asymmetries has the advantage of being insensitive to systematic asymmetries in the incoming proton flux. It also quickly eliminates strongly inelastic scatters (stars), and provides a complete angular distribution from which the fraction of scatters which are inelastic can be deduced. The effect of inelastic scatters upon the scattering asymmetry is large when the energy-loss resolution is poor, an inherent problem with bremsstrahlung beams. The counting rate for this small chamber (3.4g/cm2 carbon scatterer) was 11 scatters/hour using every 5th synchrotron pulse; larger chambers with more dense scatterers (such as Freon) could give higher counting rates. Results are fork = 725MeV and ϑ (pion) = 87° (cm.), P=0.74±0.20, and for k=900MeV and ϑ (pion) = 70°, P=.51±.7. P is taken to be positive along the directionK xp, wherep is the momentum of the outgoing proton.
No description provided.
K L 0 p interactions were studied in the CERN 2m H 2 bubble chamber in the c.m. energy range 1490–1700 MeV. The experimental details are described. Results are presented on the final states Λπ + , Σ 0 π + and Λπ + π 0 . The effect of these data on a recent partial-wave analysis of the two-body states is examined.
No description provided.
No description provided.
KL --> 3PI USED TO MEASURE ABSOLUTE CROSS SECTIONS AT 530 MEV/C.
A bubble chamber investigation of π−+p elastic scattering at 1 200 MeV (K.E.) is reported. The total and differential cross-sections are determined. By extrapolation of the angular distribution, the 0° cross-section is derived and compared with the results obtained with the help of the dispersion relations and the optical theorem. The forward peak is investigated in terms of diffraction scattering and a value for the optical radius is derived.
No description provided.
No description provided.
No description provided.
K−−p interactions in the Columbia-BNL 30-in. hydrogen bubble chamber were studied at nine momenta from 594 to 820 MeVc. The results for elastic-scattering and zero-prong-plus-V0 events are presented here. Differential cross sections are given for the K−p, K¯0n, and Λπ0 final states. A fit to the K¯N channels was obtained which shows the effects of a 32− resonance at 1701 MeV. This energy is appreciably displaced from the peak in the inelastic cross section.
No description provided.
No description provided.
No description provided.
None
No description provided.
Data from an exposure of the BEBC bubble chamber filled with deuterium to neutrino and antineutrino wide band beams have been used to extract the x dependence of the structure functions for scattering on protons and neutrons and the fractional momentum distributions of the valence quarks and the antiquarks of different flavours. The difference F n 2 − F p 2 is compared with recent data from high energy μD scattering. A result is also obtained on the sum rule giving the difference between the number of up and down quarks in the nucleon.
No description provided.
An analysis has been performed of neutrino and antineutrino interactions with protons and neutrons in a deuterium bubble chamber. The interactions under study are quasielastic neutrino-neutron scattering and one-, two- and three-pion production reactions. Results are presented on cross sections, effective mass distributions, resonance production, momentum transfer distributions and coefficients of the decay angular distributions. Where possible, comparisons are made with existing theoretical models and predictions.
No description provided.
Numerical values supplied by A.Tenner.
Numerical values supplied by A.Tenner.
The ratios of neutral-current to charged-current cross sections of v and v interactions, seperately, on proton and neutron targets have been measured. The Big European Bubble Chamber (BEBC), filled with deuterium and equipped with an external muon identifier (EMI) and an internal picket fence (IPF), was exposed to the CERN SPS (anti)neutrino wide-band beam. The measured ratios are R v p= = 0.405 ± 0.024 ± 0.021 , R v n = 0.243 ± 0.013 ± 0.016, R v p = 0.301 ± 0.027 ± 0.024 and R v n = 0.490 ± 0.050 ± 0.037 . (The first error is statistical and the second systematic). From combinations of these ratios the following neutral-current chiral coupling constants have been determined: u L 2 = 0.099 ± 0.018 ± 0.008, d L 2 = 0.202 ± 0.020 ± 0.019, u R 2 = 0.020 ± 0.016 ± 0.009 and d R 2 = 0.002 ± 0.017 ± 0.010. These results agree with the predictions of the SU(2) × U(1) standard electroweak model. Assuming ϱ = 1, the corresponding value of sin 2 θ w is found to be 0.247 ± 0.029, whereas a two-parameter fit to the data yields sin 2 θ w = 0.243 ± 0.046 and ϱ = 0.996 ± 0.041.
No description provided.
No description provided.
No description provided.
We have measured neutral and charged current interactions of ν μ and ν μ on proton and neutron. From a combination of ratios we determine the neutral current chiral coupling constants. The results are u 2 L = 0.13 ± 0.03, d 2 L = 0.19 ± 0.03, u 2 R = 0.02 ± 0.02 and d 2 R = 0.00 ± 0.02. These results agree with the predictions of the standard SU(2) × U(1) model. The corresponding value of sin 2 θ W is 0.20 ± 0.04.
No description provided.
No description provided.
No description provided.