Evidence is presented for a narrow state, called ξ, in the decay modes J/ψ→γξ, ξ→K+K−, and ξ→KS0KS0. In the K+K− mode, the ξ has a mass of 2.230±0.006±0.014 GeV/c2, a width of Γ=0.026−0.016+0.020± 0.017 GeV/c2, a product branching ratio of (4.2−1.4+1.7±0.8)×10 −5, and a statistical significance of ∼4.5 standard deviations. In the KS0KS0 mode, it has a mass of 2.232±0.007±0.007 GeV/c2, a width of Γ=0.018−0.015+0.023± 0.010 GeV/c2, a product branching ratio of (3.1−1.3+1.6±0.7)×10 −5, and a statistical significance of ∼3.6 standard deviations. Limits on ξ decay to other final states are presented.
No description provided.
The two-photon production of the η meson has been observed, and a value has been determined for the two-photon η decay width by a measurement of the cross section σ(e+e−→e+e−η) where η→γγ. The measurement was made with the TPC/Two-Gamma facility at the SLAC e+e− collider PEP, with an accumulated data sample of 64.5 pb−1. The η→γγ events were both triggered and detected by the pole-tip calorimeter. The measured two-photon η decay width is Γη→γγ=0.64±0.14 (statistical) ±0.13 (systematic) keV, in agreement with earlier similarly determined values.
No description provided.
The production of charmed D* mesons in e+e− annihilations at a center-of-mass energy of 29 GeV has been studied using the time-projection-chamber (TPC) detector at the SLAC storage ring PEP. The production cross section, fragmentation function, and forward-backward asymmetry due to electroweak effects are measured, and a limit on D0-D¯0 mixing is determined.
No description provided.
No description provided.
For the reaction π−N→V0X, where V0 is a Ks0, Λ, and Λ¯ and X are charged particles, we measured the transverse- and longitudinal-momentum distributions, and inclusive cross sections for the V0 and for K*±(892), Σ±(1385), and Ξ±(1321). We compare our results with predictions of quark-counting rules, and conclude that valence quarks play an important role in strange-particle production.
No description provided.
We have measured the production polarization of 265- and 310-GeV/c Σ− in the inclusive reaction p+Cu→Σ−+X using 400-GeV/c protons. The polarization was analyzed via the asymmetry in the weak decay Σ−→n+π−, and has typical values of +0.20 with respect to the direction of the cross product of the incident-proton and Σ− momenta. Using the spin-precession technique, we have determined the Σ− magnetic moment to be -1.23±0.03±0.03 nuclear magnetons, where the statistical and systematic errors are shown separately.
No description provided.
No description provided.
No description provided.
From the measurement of e + e - pairs from the reaction p̄p→e + e - at the CERN-ISR, using an antiproton beam and a hydrogen jet target, we derived upper limits for the proton magnetic form factor in the time-like region at Q 2 ⋍8.9( GeV c ) 2 and Q 2 ⋍12.5( GeV c ) 2 .
No description provided.
Measurements are presented of two exclusive diffractive reactions, pp → (Λ 0 φ 0 K + ) p and pp → (Λ 0 Λ 0 p)p , at √ s = 63 GeV . Pronounced correlations with the beam direction are observed (in the rest frame of the forward-going bracketed system) for those outgoing particles which contain the beam valence quarks. In each case there is a forward-Λ 0 in correlation with a backward K + or p, respectively. No such behavior is seen for the particles which do not contain beam valence quarks (φ 0 and Λ 0 , respectively) . Interpreted as examples of pomeron-proton scattering, these results constitute evidence that, for these final states, the pomeron interacts with a single valence quark and apparently back-scatters it. The subsequent hadronization leads to a longitudinal event structure.
Cross sections for forward LAMBDA signal counting both arms of the p p interaction.
Cross sections for forward LAMBDA signal counting both arms of the p p interaction.
No description provided.
New data is presented on the ratios of structure functions F 2 ( x , Q 2 ) measured in deep inelastic muon scattering with deuterium, nitrogen, and iron targets. The existence of nuclear effects at large Q 2 is confirmed with improved systematic accuracy. The ratio F 2 Fe ( x ) F 2 D 2 ( x ) covers the range 0.20 ⩽ x ⩽ 0.70 and is in agreement with earlier measurements. The ratio F 2 N 2 ( x )/ F 2 D 2 ( x ) is measured over the range 0.08 ⩽ x ⩽ 0.70 and is compatible with unity below x = 0.3.
VALUES OF Q2 CORRESPONDING TO THE X-BINS IN THIS TABLE ARE:- 46-106,46-106,53-150,53-200,70-200,80-200 RESPECTIVELY.
VALUES OF Q2 CORRESPONDING TO THE X-BINS IN THIS TABLE ARE:- 26-40,26-61,30-80,30-106,30-106,30-150,30-200,35-200,46-200.
We report a measurement of the inclusive charged-particle distribution for gluon jets derived from nearly threefold-symmetric three-jet events taken at center-of-mass energy of 29 GeV in e+e− annihilation. The charged-particle spectrum for these jets is observed to fall off more rapidly than those of quark jets of the same energy.
Errors include both statistics and the uncertainty in correction factors. X is defined at the energy of the individual particle divided by the total energy of the jet to which it is assigned.
Results on inclusive ϕ production inK−p interactions at 110 GeV/c are presented. The production cross section is found to be larger than in πp andpp interactions at similar energies, suggesting OZI allowed\(s\bar s\) fusion to be the dominant mechanism in ϕ production. Thex distributions of ϕ and\(\bar K^{*0} \) are found to be similar to each other over the entirex range suggesting an overall strangeness suppression factor of 0.20±0.04 in the sea to be the dominant source of the difference in the cross section for ϕ and\(\bar K^{*0} \). There is no evidence of a narrowφπ− state around 2.1 GeV/c2 as suggested byK+ experiments, but there is some excess of events in the region 1.94−1.98 GeV/c2 consistent with theF-meson mass as observed ine+e− experiments.
Errors contain both statistics and systematics.
F(XL) is invariant cross section.