Neutron-proton total cross-sections were measured in the momentum range from 8 GeV/ c to 21 GeV/ c with an accuracy of better than 2% using a 0 o neutron beam at the CERN Proton Synchrotron. The np total cross-section drops from 39.7 mb at 8 GeV/ c at 21 GeV/ c , and thus follows closely the pp total cross-sections in this momentum interval.
No description provided.
Cross sections for the reactions γp→K+Λ and γp→K+Σ0 have been measured at squared four-momentum transfer (−t) from 0.005 to 2 GeV2, at photon energies 5, 8, 11, and 16 GeV. For −t>0.2 GeV2 each of the K+ cross sections is about ⅓ of the π+n photoproduction cross section, having nearly the same energy and momentum-transfer dependence. The K+ cross sections fall off at small |t|, however, in contrast to the sharp forward spike seen in π+n; this leads to a disagreement with an SU(3) prediction for −t<0.1 GeV2. The ratio of K+Σ0 to K+Λ cross sections is typically between 0.5 and 1.0.
'1'.
'1'.
'1'.
Elastic π±−p, K−−p, and p¯−p scattering cross sections have been measured using three different experimental arrangements covering the c.m. angular regions ∼20°-120°, ∼135°-169°, and ∼165°-180° at incident momenta from 6 to 17 GeV/c. In the region 130°-180°, only π±−p scattering was measured. In the angular region near 180°, the energy dependences and shapes of the π−p backward peaks were determined up to crossed-momentum transfers of u∼−2 (GeV/c)2. At all energies, the π+−p backward peak had a sharp dip at u=−0.13 (GeV/c)2, with no similar effect in the π−−p case. Nearly complete angular distributions of π−−p elastic scattering from 20° to 180° have been obtained at 6 and 10 GeV/c. These results at 6 and 10 GeV/c as well as at 8 GeV/c reveal a sharp dip in π−−p scattering at t=−3 (GeV/c)2. Several structures in the form of dips or shoulders were seen in the p¯−p angular distributions also, with less pronounced structure observed in K−−p scattering. At fixed momentum transfer, all cross sections when expressed as dσdt appear to be decreasing with increasing energy.
'1'. '2'. '3'. '4'.
No description provided.
No description provided.
We have investigated the photoproduction process γ+p→π++n over a wide range of energies and u values at the Stanford Linear Accelerator Center (SLAC) accelerator. We also have investigated γ+p→π−+N*++ at one value of u and γ+p→K++Λ0, Σ0 at one u value and three energies. Our results for dσdu for the photoproduction of π+ mesons from hydrogen are roughly α2π of the corresponding cross sections for the elastic scattering of π− mesons from hydrogen. The u dependence of our cross sections is not dominated by nucleon exchange as it is in the case of π+p elastic scattering.
No description provided.
No description provided.
No description provided.
The differential cross sections for single-π+ photoproduction from hydrogen have been measured over a range of momentum transfers from -2×10−4 to -2 (GeV/c)2, and photon energies from 5 to 16 GeV. The differential cross section increases by roughly a factor of 2 as the magnitude of the square of the momentum transfer decreases from 0.02 (GeV/c)2. The cross section falls approximately as exp(−3|t|) at large momentum transfers, with a similar momentum-transfer dependence of the cross section at all photon energies studied.
No description provided.
No description provided.
No description provided.
Differential cross sections for elastic π±−p scattering have been measured at lab momenta of 8 and 12 GeV/c in a momentum-transfer region corresponding to 1.2≤−t≤6 (GeV/c)2. Also, differential cross sections near 180° were measured for 4 and 8 GeV/c pions. At momentum transfers greater than −t=2 (GeV/c)2, the π−p cross sections drop much faster with increasing angle than the corresponding p−p cross sections. Also, in the region −t≃1.3 (GeV/c)2, there is structure in the π−p angular distribution but not in the p−p angular distribution. At −t≃3 (GeV/c)2, the drop in cross section appears to stop and from then on the angular distribution is consistent with isotropy. But in the angular region 170° to 180°, the cross sections have become much larger, and sharp backward peaks are observed. Information is given on the energy and charge dependences and widths of these backward peaks.
'1'. '2'.
'1'. '2'.
No description provided.
None
'1'. '2'. '3'. '4'.
'1'.
'1'.
The total cross sections σT of p, p¯, π±, and K± on hydrogen and deuterium have been measured between 6 and 22 GeVc at intervals of 2GeVc to an accuracy greater than previously reported. The method utilized was a conventional good-geometry transmission experiment with scintillation counters subtending various solid angles at targets of liquid H2 and D2. With the increase in statistical accuracy of the data, it was found that a previously adopted procedure of linearly extrapolating to zero solid angle the partial cross sections measured at finite solid angles was not a sufficiently accurate procedure from which to deduce σT. The particle-neutron cross sections are derived by applying the Glauber screening correction to the difference between the particle-deuteron and particle-proton cross sections. The cross sections σT(π+d) and σT(π−d) are equal at all measured momenta, which confirms the validity of charge symmetry up to 20GeVc. Results are presented showing the variation of cross sections with momentum; evidence is presented for a small but significant decrease in σT(pp) [and σT(pn)] in the momentum region above 12GeVc.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.