Differential cross sections for γp→ηp have been measured with tagged real photons for incident photon energies from 0.75 to 1.95 GeV. Mesons were identified by missing mass reconstruction using kinematical information for protons scattered in the production process. The data provide the first extensive angular distribution measurements for the process above W=1.75 GeV. Comparison with preliminary results from a constituent quark model support the suggestion that a third S11 resonance with mass ∼1.8 GeV couples to the ηN channel.
Cross sections for photon energies 0.775 to 0.925 GeV.
Cross sections for photon energies 0.975 to 1.125 GeV.
Cross sections for photon energies 1.175 to 1.325 GeV.
The photoproduction of eta-mesons from 2H and 4He has been studied for energies close to the production thresholds. The experiments were carried out with the tagged photon beam of the Mainz MAMI accelerator. The eta-mesons were detected via their two photon decays with the electromagnetic calorimeter TAPS. Total cross sections, angular and momentum distributions of the eta-mesons have been determined for both reactions. The total cross sections in the threshold region show a large enhancement over the predictions of a participant - spectator model, indicating significant final state interaction effects. The results are compared to recent model calculations taking into account nucleon-nucleon and nucleon-eta final state interaction effects on different levels of sophistication.
Total inclusive photoproduction cross sections. Statistical errors only.
Angular distributions of ETA mesons from the Deuterium target in the photon-nucleus cm system. Statistical errors only.
Angular distributions of ETA mesons from the Deuterium target in the photon-nucleus cm system. Statistical errors only.
The reported data are given for the mean angles measured rather than for the central angles. The data are normalized to the most recent Evaluated Nuclear Data File evaluated angle-integrated elastic-scattering cross section and refitted with a Legendre polynomial expansion.
Measured values of the N-P elastic scattering angular distributions. Data are normalized to the Breit-Hopkins total elastic cross section after radiative capture correction.
A precision measurement of absolute pi+p and pi-p elastic differential cross sections at incident pion laboratory kinetic energies from T_pi= 141.15 to 267.3 MeV is described. Data were obtained detecting the scattered pion and recoil proton in coincidence at 12 laboratory pion angles from 55 to 155 degrees for pi+p, and six angles from 60 to 155 degrees for pi-p. Single arm measurements were also obtained for pi+p energies up to 218.1 MeV, with the scattered pi+ detected at six angles from 20 to 70 degrees. A flat-walled, super-cooled liquid hydrogen target as well as solid CH2 targets were used. The data are characterized by small uncertainties, ~1-2% statistical and ~1-1.5% normalization. The reliability of the cross section results was ensured by carrying out the measurements under a variety of experimental conditions to identify and quantify the sources of instrumental uncertainty. Our lowest and highest energy data are consistent with overlapping results from TRIUMF and LAMPF. In general, the Virginia Polytechnic Institute SM95 partial wave analysis solution describes our data well, but the older Karlsruhe-Helsinki PWA solution KH80 does not.
Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and single arm pion detection. There is an additional systematic error of 1.1 PCT for PI+ beams which is not included in the errors shown in the table.
Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and two arm pion detection. There is an additional systematic error of 1.3 PCT for PI+ beams which is not included in the errors shown in the table.
Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and two arm pion detection. There is an additional systematic error of 1.3 PCT (1.6 PCT) for PI+ (PI-) beams which is not included in the errors shown in the table.
We present measurements of the differential and total cross sections and the Λ polarization for the reaction K−p→ηΛ from threshold to pK−=770MeV/c, with much better precision than previous measurements. Our cross-section data show a remarkable similarity to the SU(3) flavor-related π−p→ηn cross-section results. The reaction K−p→ηΛ at threshold is dominated by formation of the intermediate Λ(1670)12− state.
Total cross section measurement for K- P --> ETA LAMBDA. Errors shown are statistical only.
Differential cross sections DSIG/DOMEGA for K- P --> ETA LAMBDA. Errors shown are statistical only.
Differential cross sections DSIG/DOMEGA for K- P --> ETA LAMBDA. Errors shown are statistical only.
The present data support a large anisotropy in accordance with phase shift predictions and in contrast to another recent experiment.
Measured deuteron angular distribution in the c.m. system. The errors shown are statistical only and there is an additional 10 PCT systematic uncertainty on the overall normalisation.
Legendre polynomial coefficients from a second order and fourth order fit.
Total cross section from second order fit.
The exclusive production cross sections for $\omega$ and $\phi$ mesons have been measured in proton-proton reactions at $p_{lab}=3.67$ GeV/c. The observed $\phi/\omega$ cross section ratio is $(3.8\pm0.2^{+1.2}_{-0.9})\times 10^{-3}$. After phase space corrections, this ratio is enhanced by about an order of magnitude relative to naive predictions based upon the Okubo-Zweig-Iizuka (OZI) rule, in comparison to an enhancement by a factor $\sim 3$ previously observed at higher beam momenta. The modest increase of this enhancement near the production threshold is compared to the much larger increase of the $\phi/\omega$ ratio observed in specific channels of $\bar pp$ annihilation experiments. Furthermore, differential cross section results are also presented which indicate that although the $\phi$ meson is predominantly produced from a $^3P_1$ proton-proton entrance channel, other partial waves contribute significantly to the production mechanism at this beam momentum.
No description provided.
Differential cross section of OMEGA production.
Differential cross section of PHI production.
The ratio of the total exclusive production cross sections for $\eta\prime$ and $\eta$ mesons has been measured in the $pp$ reaction at $p_{beam}=3.67$ GeV/c. The observed $\eta\prime/\eta$ ratio is $(0.83\pm{0.11}^{+0.23}_{-0.18})\times 10^{-2}$ from which the exclusive $\eta\prime$ meson production cross section is determined to be $(1.12\pm{0.15}^{+0.42}_{-0.31})\mu b$. Differential cross section distributions have been measured. Their shape is consistent with isotropic $\eta\prime$ meson production.
No description provided.
No description provided.
Only statistial errors.
A test of the QED process e+e- -> gamma gamma (gamma) is reported. The data analysed were collected with the DELPHI detector in 1998 and 1999 at the highest energies achieved at LEP, reaching 202 GeV in the centre-of-mass. The total integrated luminosity amounts to 375.7 pb^{-1}. The differential and total cross-sections for the process e+e- -> gamma gamma were measured, and found to be in agreement with the QED prediction. 95% Confidence Level (C.L.) lower limits on the QED cut-off parameters of Lambda+ > 330 GeV and Lambda- > 320 GeV were derived. A 95% C.L. lower bound on the mass of an excited electron of 311 GeV/c^2 (for lambda_gamma = 1) was obtained. s-channel virtual graviton exchange was searched for, resulting in 95% C.L. lower limits on the string mass scale, M_S: M_S > 713 GeV/c^2 (lambda = 1) and M_S > 691 GeV/c^2 (lambda = -1).
No description provided.
No description provided.
No description provided.
The total and differential cross sections of the process e+e- -> n gamma with n >= 2 are measured using data collected by the L3 experiment at centre-of-mass energies of \sqrt{s}=183 and 189 GeV. The results are in agreement with the Standard Model expectations. Limits are set on deviations from QED, contact interaction cut-off parameters and masses of excited electrons.
Measured cross section.
Measured differential cross sections corrected for efficiency and additional photons as a function of cos(theta) where theta is the polar angle of the event defined as. cos(theta)=ABS((sin(theta1-theta2)/2)/(sin(theta1+theta2)/2)).