We present a study of the inclusive production of π 0 , η, K s 0 and Λ based on 929,000 hadronic Z decays recorded with the L3 detector at LEP. The measured inclusive momentum distributions have been compared with predictions from parton shower models as well as an analytical Quantum Chromodynamics calculation. Comparing to low energy e + e - data, we find that QCD describes the energy evolution of the hadron spectrum.
No description provided.
No description provided.
No description provided.
This paper describes an analysis of sub-jet multiplicities, which are expected to be sensitive to the properties of soft gluon radiation, in hadronic decays of theZ0. Two- and three-jet event samples are selected using thek⊥ jet clustering algorithm at a jet resolution scaley1. The mean sub-jet multiplicity as a function of the sub-jet resolution,y0, is determined separately for both event samples by reapplying the same jet algorithm at resolution scalesy0<y1. These measurements are compared with recent perturbative QCD calculations based on the summation of leading and next-to-leading logarithms, and with QCD Monte Carlo models. The analytic calculations provide a good description of the sub-jet multiplicity seen in three- and two-jet mvents in the perturbative region (y0≈y1)), and the measured form of the data is in agreement with the expectation based on coherence of soft gluon radiation. The analysis provides good discrimination between Monte Carlo models, and those with a coherent parton shower are preferred by the data. The analysis suggests that coherence effects are present in the data.
Ratio of multiplicities of sub-jets from 3 and 2 jet samples. Data are corrected to the hadron level and have combined statistical and systematic errors.
Sub-jet multiplicity for 3 jet sample. Data corrected to the hadron level and have combined statistical and systematic errors.
Sub-jet multiplicity for 2 jet sample. Data corrected to the hadron level and have combined statistical and systematic errors.
We report on the measurement of the leptonic and hadronic cross sections and leptonic forward-backward asymmetries at theZ peak with the L3 detector at LEP. The total luminosity of 40.8 pb−1 collected
Results from 1990 data. Additional systematic uncertainty of 0.3 pct.
Results from 1991 data. Additional systematic uncertainty of 0.15 pct.
Results from 1992 data. Additional systematic uncertainty of 0.15 pct.
We report on a sample of Jψ mesons coming from secondary vertices, a characteristic of heavyquark decay, detected in the Fermilab Meson West spectrometer. Based on eight signal events in which a Jψ emerges from a secondary vertex occurring in an air-gap region, we obtain an inclusive bb¯ cross section of 75 ± 31 ± 26 nb/nucleon. This result is compared to recent QCD predictions. We have also observed several events in the exclusive decay modes B±→Jψ+K± and B0→Jψ+K0* in which the B mass is fully reconstructed.
The cross section is multiplied on Br(J/PSI --> MU+ MU-).
No description provided.
Measurements have been made of pi+ absorption on He3 at T_pi+ = 118, 162, and 239 MeV using the Large Acceptance Detector System (LADS). The nearly 4pi solid angle coverage of this detector minimizes uncertainties associated with extrapolations over unmeasured regions of phase space. The total absorption cross section is reported. In addition, the total cross section is divided into components in which only two or all three nucleons play a significant role in the process. These are the first direct measurements of the total and three nucleon absorption cross sections.
ABSORPTION CROSS SECTION.
ABSORPTION CROSS SECTION.
In the very heavy collision system Au197+197Au the K+ production process was studied as a function of impact parameter at 1 GeV/nucleon, a beam energy well below the free N-N threshold. The K+ multiplicity increases more than linearly with the number of participant nucleons and the K+/π+ ratio rises significantly when going from peripheral to central collisions. The measured K+ double differential cross section is enhanced by a factor of 6 compared to microscopic transport calculations if secondary processes (ΔN→KΛN and ΔΔ→KΛN) are ignored.
No description provided.
The total K+ cross section is determined by extrapolating and integrating the double differential cross section d2(sig)/d(p)/d(omega) over momentum and solid angle.
Using a silicon-microstrip detector array to identify secondary vertices occurring downstream of a short platinum target, we have searched for the decay D0→μ+μ−. Normalized relative to the J/ψ→μ+μ− signal observed in the same data sample, for a 3.25-mm minimum decay distance our branching-ratio sensitivity is (4.8±1.4)×10−6 per event, and after background subtraction we observe -4.1±4.8 events. Using the statistical approach advocated by the Particle Data Group, we obtain a limit B(D0→μ+μ−)<3.1×10−5 at 90% confidence, confirming with a different technique the limit previously obtained by Louis et al. The interpretation of the upper limit involves complex statistical issues; we present another approach which is more suitable for combining the results of different experiments.
Measured branching ratio.
Classical 90 PCT upper limit of branching ratio.
: We have measured the spin-dependent structure function $g_1~p$ of the proton in deep inelastic scattering of polarized muons off polarized protons, in the kinematic range $0.003<x<0.7$ and $1\,\mbox{GeV}~2<Q~2<60\,\mbox{GeV}~2$. Its first moment, $\int_0~1 g_1~p(x) dx $, is found to be $0.136 \pm 0.011\,(\mbox{stat.})\pm 0.011\,(\mbox{syst.})$ at $Q~2=10\,\mbox{GeV}~2$. This value is smaller than the prediction of the Ellis--Jaffe sum rule by two standard deviations, and is consistent with previous measurements. A combined analysis of all available proton, deuteron and neutron data confirms the Bjorken sum rule to within $10\%$ of the theoretical value.
Results on the virtual photon proton asymmetry.
Results on the spin structure function of the proton.
Data for g1 at fixed Q**2 = 10 GeV (assuming no Q**2 dependence of A1).
We present the results of a search for the top quark in 19.3 pb−1 of p¯p collisions at √s =1.8 TeV. The data were collected at the Fermilab Tevatron collider using the Collider Detector at Fermilab (CDF). The search includes standard model tt¯ decays to final states eeνν¯, eμνν¯, and μμνν¯ as well as e+ν+jets or μ+ν+jets. In the (e,μ)+ν+jets channel we search for b quarks from t decays via secondary vertex identification and via semileptonic decays of the b and cascade c quarks. In the dilepton final states we find two events with a background of 0.56−0.13+0.25 events. In the e,μ+ν+jets channel with a b identified via a secondary vertex, we find six events with a background of 2.3±0.3. With a b identified via a semileptonic decay, we find seven events with a background of 3.1±0.3. The secondary vertex and semileptonic-decay samples have three events in common. The probability that the observed yield is consistent with the background is estimated to be 0.26%. The statistics are too limited to firmly establish the existence of the top quark; however, a natural interpretation of the excess is that it is due to tt¯ production. We present several cross-checks. Some support this hypothesis; others do not. Under the assumption that the excess yield over background is due to tt¯, constrained fitting on a subset of the events yields a mass of 174±10−12+13 GeV/c2 for the top quark. The tt¯ cross section, using this top quark mass to compute the acceptance, is measured to be 13.9−4.8+6.1 pb.
Cross section refers to top quark mass equals 174 +- 10 +13 - 12 GeV. Two events in the dilepton final states and six events in the electron or muon nu jets final states.
Data from deep inelastic scattering of 200 GeV muons on a carbon target with squared four-momentum transfer 52 GeV2≤Q2≤200 GeV2 were analysed in the region of the Bjorken variable close tox=1, which is the kinematic limit for scattering on a free nucleon. At this value ofx, the carbon structure function is found to beF2C≈1.2·10−4. Thex dependence of the structure function forx>0.8 is well described by an exponentialF2C∞exp(−sx) withs=16.5±0.6.
No description provided.
Multiplicative factors by which F2 has to be multiplied or divided to allow for a systematic uncertainty in detector resolution.
Multiplicative factors by which F2 has to be multiplied or divided to allow for a systematic uncertainty in the beam energy.