At the Bonn 2.5 GeV electron synchrotron the first measurements of the target asymmetry for the reaction γ + n ↑ → π − + p have been performed. The negative pions were detected in a magnetic spectrometer at a constant pion c.m. angle of 40° and photon energies between 0.45 GeV and 2.0 GeV. Deuterated butanol was used as target material. The polarization of the deuterons was about 16%. The results show a significant difference from the previously measured π + asymmetry.
No description provided.
We report final results on the polarization parameter P in elastic scattering of π − , K − and antiprotons at 40 GeV/ c incident momentum. The energy dependence of P (t) in π − p above 10 GeV/ c is well fitted by P (t) α s αR(t)-α P (t) where α R (t) are the effective Regge and Pomeron trajectories respectively. The data in K − p are compatible with exchange degeneracy. The results inp¯p show an important structure for |t|> 0.3 (GeV/c) 2 demonstrating the existence of a large helicity flip amplitude.
.
.
.
The invariant mass spectrum of neutral meson states from π − p interactions at 40 GeV/ c incident momentum has been investigated in a high statistics experiment performed at the 70 GeV IHEP accelerator. To detect the high energy photons coming from the produced neutral states, a hodoscope spectrometer with a computer on-line was used. A clear structure on the mass spectrum of dipions produced in the reaction π − p→π°π°n is observed at 2 GeV. The decay angular distributions show in this mass region the variation with mass typical of a state with a spin J = 4. The mass of the observed meson is found to be M = (2020±30)MeV and the estimate of the full width is (180±60) MeV.
No description provided.
Cross sections for γd and γn interactions and photoproduction of ϱ 0 and ω are studied at 4.3 GeV, using a linearly polarized photon beam in a deuterium bubble chamber. We find that σ T (γ n ) ⋍ σ T (γ p ) within about 5% and that the γn average charge multiplicity is lower than γp by 0.42±0.09. About 4000 ϱ 0 events and 70 coherent ω events are observed. We present total and differential cross sections for both xoherent and incoherent ϱ 0 production on deuterium, as well as decay angular distributions and density-matrix elements. We find that the t -channel isospin-one exchange amplitude in γ N → ϱ 0 N (e.g. A 2 exchange) is at most 5–13% of the dominant isoscalar amplituds. The ϱ 0 production mechanism is dominantly s -channel helicity-conserving (SHC) on both neutrons and protons. We find that relative to the SHC amplitudes, the single and double helicity-flip amplitudes at the γϱ 0 vertex are of the order of 10–15% for | t | > 0.25 GeV 2 , and have the same sign on both nucleons. This shows that helicity-flip is mainly due to isoscalar exchanges. The ratio of ω to ϱ 0 coherent forward cross sections is found to be 0.16±0.04. The natural-parity exchange part of γ N → ω N is strongly dominated by isoscalar exchanges, and the magnitude of the isovector-exchange is consistent with zero.
TOPOLOGICAL CROSS SECTIONS AND AVERAGE CHARGE MULTIPLICITIES GIVEN IN TABLE 1.
'PARAMETRIZATION'.
No description provided.
A comparison is made of the low-mass three-meson systems (πππ), (Kππ), (π K K ) and ( K K K ) diffractively produced in the reaction meson + proton → three mesons + proton. Several striking similarities and a few important differences are observed: (i) the reactions are consistent with the assumption that the three mesons decay entirely into a 0 − meson and a 0 + , 1 − or 2 + resonance; (ii) the three-meson mass spectra have a peak ≈ 250 MeV above the effective threshold M eff of the dominant decay mode and then fall off approximately as (mass) −3 ;(iii) the average spin 〈 J 〉 = 0.55 + 1.1 Q eff , where Q eff = M - M eff ; (iv) the average orbital angular momentum 〈 l 〉 increases according to 〈 l 〉 = 0.75 Q eff ; (v) the three-meson states are produced dominantly in unnatural spin-parity states and no evidence for their being resonant is found; (vi) the only natural spin-parity states found are the well-established 2 + resonances A 2 and K ∗ (1420); they have similar properties to the non-resonant unnatural parity states except for a dip at t = 0 in the dσ/d t distributions; (vii) both the unnatural and natural spin-parity states are produced mostly by an exchange of natural parity; (viii) there is evidence for two types of production mechanism with different polarization properties, one approximately conserving helicity in the t -channel and the other in the s -channel.
No description provided.
Inclusive ϱ 0 and f(1270) production are analysed in π + p collisions at 8, 16 and 23 GeV/ c . The ϱ 0 cross section increases with energy such that the ϱ 0 /π − ratio remains constant. Emphasis is laid on cross sections as a function of the transverse momentum and of the Feynman x variable. The ϱ 0 's can be attributed to two sources: some ϱ 0 's are centrally produced, but there is a pronounced forward peak. The distribution of leptons coming from ϱ 0 decay is discussed.
No description provided.
No description provided.
No description provided.
We determine the ratio of the partial decay width for ψ(3684)→μ+μ− to that for the cascade decay ψ(3684)→ψ(3095)+X to be (1.4 ± 0.3)% and, by direct observation of associated charged particles and γ rays, find the ratio of the partial decay width for ψ(3684)→ψ(3095)+π0π0 to that for ψ(3684)→ψ(3095)+π+π− to be 0.64 ± 0.15.
Axis error includes +- 20/20 contribution (UNKNOWN SYSTEMATICAL ERRORDECAY-BR(BRN=J/PSI(3097) --> MU+ MU-, BR=?, C=FOLDED)).
Axis error includes +- 20/20 contribution (UNKNOWN SYSTEMATICAL ERRORDECAY-BR(BRN=J/PSI(3097) --> MU+ MU-, BR=?, C=FOLDED)).
A partial-wave analysis has been performed of the diffractively produced low-mass ( K ̄ 0 π − π 0 ) system in the reaction K − p → ( K ̄ 0 π − π 0 ) p at 10 and 16 GeV/ c . Thus information complementary to that derived from the K − p → (K − π + π − )p) channel is obtained. The presence of the K ϱ decay mode, besides the dominant K ∗ (890)π mode, for the state J P = 1 + , is confirmed. It is also confirmed that for this 1 + state the assumption of factorization of the amplitude into “production” and “decay” does not hold: the two decay modes K ∗ π and K ϱ have different polarisation properties (helicity is approximately conserved in the t -channel for the first, in the s -channel for the second). The assumption that the ( K ̄ 0 π − π 0 ) system has isospin I = 1 2 has been tested and found to hold. From the cross sections for the various J P states, assuming I = 1 2 , the cross sections for the (K − π + π − ) system are predicted and compared with the experimental ones. In general, agreement is found.
No description provided.
No description provided.
By means of an isospin analysis of the reaction π ± p→ π (N π ) at 16 GeV/ c we have determined the decay angular distributions of the N π system with I= 1 2 produced by isospin zero exchange. Helicity conservation is not observed in the t -channel for the N π mass region below 1.6 GeV, where diffraction dissociation of the proton is supposed to dominate. There are indications for approximate t -channel helicity conservation for N ∗ (1690) production. In the helicity frame, the experimental data are not in agreement with s -channel helicity conservation over the whole N π mass range investigated. Thus the diffractive process N→N π differs both from the process N→N ππ (or π → πππ and K→K ππ ) which approximately conserves t -channel helicity and from the elastic scattering N→N which conserves helicity in the s -channel.
No description provided.
FIT TO ISOSPIN HALF NUCLEON RESONANCE PRODUCTION WITH ISOSPIN ZERO EXCHANGE.
Inclusive Δ++(1236) production in π+p and pp interactions is consistent with one-pion exchange. The average charged multiplicity recoiling from the Δ++ is studied as a function of missing mass, M2, for both interactions.
No description provided.
No description provided.